Some extensions of the lanczos-ortiz theory of canonical polynomials in the tau method
Autor(a) principal: | |
---|---|
Data de Publicação: | 1997 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFBA |
Texto Completo: | http://www.repositorio.ufba.br/ri/handle/ri/12758 |
Resumo: | p. 609-621 |
id |
UFBA-2_a818aade6dc4052744dcd8c4488a9392 |
---|---|
oai_identifier_str |
oai:repositorio.ufba.br:ri/12758 |
network_acronym_str |
UFBA-2 |
network_name_str |
Repositório Institucional da UFBA |
repository_id_str |
1932 |
spelling |
Bunchaft, M. E. FroesBunchaft, M. E. Froes2013-08-27T17:33:01Z2013-08-27T17:33:01Z19970025-5718http://www.repositorio.ufba.br/ri/handle/ri/12758v. 66, n. 218p. 609-621Lanczos and Ortiz placed the canonical polynomials (c.p.'s) in a central position in the Tau Method. In addition, Ortiz devised a recursive process for determining c.p.'s consisting of a generating formula and a complementary algorithm coupled to the formula. In this paper a) We extend the theory so as to include in the formalism also the ordinary linear di erential operators with polynomial coe cients D with negative height h = max n2Nfmn −ng < 0; where mn denotes the degree of Dxn. b) We establish a basic classi cation of the c.p.'s Qm(x) and their orders m 2 M, as primary or derived, depending, respectively, on whether 9n 2 N: mn = m or such n does not exist; and we state a classi cation of the indices n 2 N, as generic (mn = n+h), singular (mn < n+h), and inde nite (Dxn 0). Then a formula which gives the set of primary orders is proved. c) In the rather frequent case in which all c.p.'s are primary, we establish, for di erential operators D with any height h, a recurrency formula which generates bases of the polynomial space and their multiple c.p.'s arising from distinct xn, n 2 N, so that no complementary algorithmic construction is needed; the (primary) c.p.'s so produced are classi ed as generic or singular, depending on the index n. d) We establish the general properties of the multiplicity relations of the primary c.p.'s and of their associated indices. It becomes clear that Ortiz's formula generates, for h 0, the generic c.p.'s in terms of the singular and derived c.p.'s, while singular and derived c.p.'s and the multiples of distinct indices are constructed by the algorithm.Submitted by Santiago Fabio (fabio.ssantiago@hotmail.com) on 2013-08-27T17:33:01Z No. of bitstreams: 1 11111111111.pdf: 347378 bytes, checksum: 5798b30170159d882b0ff5fa6729c449 (MD5)Made available in DSpace on 2013-08-27T17:33:01Z (GMT). No. of bitstreams: 1 11111111111.pdf: 347378 bytes, checksum: 5798b30170159d882b0ff5fa6729c449 (MD5) Previous issue date: 1997SalvadorMathematics of Computationhttp://www.ams.org/journals/mcom/1997-66-218/S0025-5718-97-00816-8/S0025-5718-97-00816-8.pdfreponame:Repositório Institucional da UFBAinstname:Universidade Federal da Bahia (UFBA)instacron:UFBASome extensions of the lanczos-ortiz theory of canonical polynomials in the tau methodMathematics of Computationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleenginfo:eu-repo/semantics/openAccessORIGINAL11111111111.pdf11111111111.pdfapplication/pdf347378https://repositorio.ufba.br/bitstream/ri/12758/1/11111111111.pdf5798b30170159d882b0ff5fa6729c449MD51LICENSElicense.txtlicense.txttext/plain1762https://repositorio.ufba.br/bitstream/ri/12758/2/license.txt1b89a9a0548218172d7c829f87a0eab9MD52ri/127582022-07-05 14:02:49.77oai:repositorio.ufba.br:ri/12758VGVybW8gZGUgTGljZW7vv71hLCBu77+9byBleGNsdXNpdm8sIHBhcmEgbyBkZXDvv71zaXRvIG5vIHJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVRkJBCgogICAgUGVsbyBwcm9jZXNzbyBkZSBzdWJtaXNz77+9byBkZSBkb2N1bWVudG9zLCBvIGF1dG9yIG91IHNldQpyZXByZXNlbnRhbnRlIGxlZ2FsLCBhbyBhY2VpdGFyIGVzc2UgdGVybW8gZGUgbGljZW7vv71hLCBjb25jZWRlIGFvClJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkYSBCYWhpYSBvIGRpcmVpdG8KZGUgbWFudGVyIHVtYSBj77+9cGlhIGVtIHNldSByZXBvc2l077+9cmlvIGNvbSBhIGZpbmFsaWRhZGUsIHByaW1laXJhLCAKZGUgcHJlc2VydmHvv73vv71vLiBFc3NlcyB0ZXJtb3MsIG7vv71vIGV4Y2x1c2l2b3MsIG1hbnTvv71tIG9zIGRpcmVpdG9zIGRlIAphdXRvci9jb3B5cmlnaHQsIG1hcyBlbnRlbmRlIG8gZG9jdW1lbnRvIGNvbW8gcGFydGUgZG8gYWNlcnZvIGludGVsZWN0dWFsIGRlc3NhIFVuaXZlcnNpZGFkZS4gCgogICAgUGFyYSBvcyBkb2N1bWVudG9zIHB1YmxpY2Fkb3MgY29tIHJlcGFzc2UgZGUgZGlyZWl0b3MgZGUgZGlzdHJpYnVp77+977+9bywgZXNzZSB0ZXJtbyBkZSBsaWNlbu+/vWEgZW50ZW5kZSBxdWU6IAoKICAgIE1hbnRlbmRvIG9zICBkaXJlaXRvcyBhdXRvcmFpcywgcmVwYXNzYWRvcyBhIHRlcmNlaXJvcywgZW0gY2FzbyAKZGUgcHVibGljYe+/ve+/vWVzLCBvIHJlcG9zaXTvv71yaW8gcG9kZSByZXN0cmluZ2lyIG8gYWNlc3NvIGFvIHRleHRvIAppbnRlZ3JhbCwgbWFzIGxpYmVyYSBhcyBpbmZvcm1h77+977+9ZXMgc29icmUgbyBkb2N1bWVudG8gKE1ldGFkYWRvcyBkZXNjcml0aXZvcykuCgogRGVzdGEgZm9ybWEsIGF0ZW5kZW5kbyBhb3MgYW5zZWlvcyBkZXNzYSB1bml2ZXJzaWRhZGUgCmVtIG1hbnRlciBzdWEgcHJvZHXvv73vv71vIGNpZW5077+9ZmljYSBjb20gYXMgcmVzdHJp77+977+9ZXMgaW1wb3N0YXMgcGVsb3MgCmVkaXRvcmVzIGRlIHBlcmnvv71kaWNvcy4gCgogICAgUGFyYSBhcyBwdWJsaWNh77+977+9ZXMgZW0gaW5pY2lhdGl2YXMgcXVlIHNlZ3VlbSBhIHBvbO+/vXRpY2EgZGUgCkFjZXNzbyBBYmVydG8sIG9zIGRlcO+/vXNpdG9zIGNvbXB1bHPvv71yaW9zIG5lc3NlIHJlcG9zaXTvv71yaW8gbWFudO+/vW0gCm9zIGRpcmVpdG9zIGF1dG9yYWlzLCBtYXMgbWFudO+/vW0gbyBhY2Vzc28gaXJyZXN0cml0byBhbyBtZXRhZGFkb3MgCmUgdGV4dG8gY29tcGxldG8uIEFzc2ltLCBhIGFjZWl0Ye+/ve+/vW8gZGVzc2UgdGVybW8gbu+/vW8gbmVjZXNzaXRhIGRlIApjb25zZW50aW1lbnRvIHBvciBwYXJ0ZSBkZSBhdXRvcmVzL2RldGVudG9yZXMgZG9zIGRpcmVpdG9zLCBwb3IgCmVzdGFyZW0gZW0gaW5pY2lhdGl2YXMgZGUgYWNlc3NvIGFiZXJ0by4KCiAgICBFbSBhbWJvcyBvIGNhc28sIGVzc2UgdGVybW8gZGUgbGljZW7vv71hLCBwb2RlIHNlciBhY2VpdG8gcGVsbyAKYXV0b3IsIGRldGVudG9yZXMgZGUgZGlyZWl0b3MgZS9vdSB0ZXJjZWlyb3MgYW1wYXJhZG9zIHBlbGEgCnVuaXZlcnNpZGFkZS4gRGV2aWRvIGFvcyBkaWZlcmVudGVzIHByb2Nlc3NvcyBwZWxvIHF1YWwgYSBzdWJtaXNz77+9byAKcG9kZSBvY29ycmVyLCBvIHJlcG9zaXTvv71yaW8gcGVybWl0ZSBhIGFjZWl0Ye+/ve+/vW8gZGEgbGljZW7vv71hIHBvciAKdGVyY2Vpcm9zLCBzb21lbnRlIG5vcyBjYXNvcyBkZSBkb2N1bWVudG9zIHByb2R1emlkb3MgcG9yIGludGVncmFudGVzIApkYSBVRkJBIGUgc3VibWV0aWRvcyBwb3IgcGVzc29hcyBhbXBhcmFkYXMgcG9yIGVzdGEgaW5zdGl0dWnvv73vv71vLgo=Repositório InstitucionalPUBhttp://192.188.11.11:8080/oai/requestopendoar:19322022-07-05T17:02:49Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)false |
dc.title.pt_BR.fl_str_mv |
Some extensions of the lanczos-ortiz theory of canonical polynomials in the tau method |
dc.title.alternative.pt_BR.fl_str_mv |
Mathematics of Computation |
title |
Some extensions of the lanczos-ortiz theory of canonical polynomials in the tau method |
spellingShingle |
Some extensions of the lanczos-ortiz theory of canonical polynomials in the tau method Bunchaft, M. E. Froes |
title_short |
Some extensions of the lanczos-ortiz theory of canonical polynomials in the tau method |
title_full |
Some extensions of the lanczos-ortiz theory of canonical polynomials in the tau method |
title_fullStr |
Some extensions of the lanczos-ortiz theory of canonical polynomials in the tau method |
title_full_unstemmed |
Some extensions of the lanczos-ortiz theory of canonical polynomials in the tau method |
title_sort |
Some extensions of the lanczos-ortiz theory of canonical polynomials in the tau method |
author |
Bunchaft, M. E. Froes |
author_facet |
Bunchaft, M. E. Froes |
author_role |
author |
dc.contributor.author.fl_str_mv |
Bunchaft, M. E. Froes Bunchaft, M. E. Froes |
description |
p. 609-621 |
publishDate |
1997 |
dc.date.issued.fl_str_mv |
1997 |
dc.date.accessioned.fl_str_mv |
2013-08-27T17:33:01Z |
dc.date.available.fl_str_mv |
2013-08-27T17:33:01Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufba.br/ri/handle/ri/12758 |
dc.identifier.issn.none.fl_str_mv |
0025-5718 |
dc.identifier.number.pt_BR.fl_str_mv |
v. 66, n. 218 |
identifier_str_mv |
0025-5718 v. 66, n. 218 |
url |
http://www.repositorio.ufba.br/ri/handle/ri/12758 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Mathematics of Computation |
publisher.none.fl_str_mv |
Mathematics of Computation |
dc.source.pt_BR.fl_str_mv |
http://www.ams.org/journals/mcom/1997-66-218/S0025-5718-97-00816-8/S0025-5718-97-00816-8.pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFBA instname:Universidade Federal da Bahia (UFBA) instacron:UFBA |
instname_str |
Universidade Federal da Bahia (UFBA) |
instacron_str |
UFBA |
institution |
UFBA |
reponame_str |
Repositório Institucional da UFBA |
collection |
Repositório Institucional da UFBA |
bitstream.url.fl_str_mv |
https://repositorio.ufba.br/bitstream/ri/12758/1/11111111111.pdf https://repositorio.ufba.br/bitstream/ri/12758/2/license.txt |
bitstream.checksum.fl_str_mv |
5798b30170159d882b0ff5fa6729c449 1b89a9a0548218172d7c829f87a0eab9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA) |
repository.mail.fl_str_mv |
|
_version_ |
1808459456448561152 |