The effect of automatic concern mapping strategies on conceptual cohesion measurement

Detalhes bibliográficos
Autor(a) principal: Silva, Bruno Carreiro da
Data de Publicação: 2016
Outros Autores: Sant'Anna, Cláudio Nogueira, Rocha, Neylor, Chavez, Christina Von Flach Garcia
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFBA
Texto Completo: http://repositorio.ufba.br/ri/handle/ri/32475
Resumo: Context: Cohesion has been recognized as an important quality attribute of software design across decades. It can be defined as the degree to which a module is focused on a single concern of software. A concern is any concept, feature, requirement or property of the problem or solution domain. Conceptual cohesion is an alternative way of cohesion measurement based on what concerns each module addresses. Therefore, adopting a strategy to map concerns to source code elements is challenging but necessary. Objective: We aim at providing empirical evidence about whether automatic concern mapping strategies are already ready to be used effectively for conceptual cohesion measurement. Method: We carried out an empirical study to assess the ability of conceptual cohesion measurement using different automatic concern mapping strategies in selecting the least cohesive modules. Results: Conceptual cohesion measurements over the two analyzed mapping strategies performed weakly in the ability of selecting the least cohesive modules. We then provide a discussion to explain the reasons. Conclusion: Concern mapping strategies should be carefully chosen for conceptual cohesion measure- ment, specially if automatic mapping is under consideration. Manual mapping is still the most reliable way for computing conceptual cohesion. We pointed out limitations in automatic mapping strategies that go beyond conceptual cohesion measurement purposes and which should be considered in future research or applications in industry.
id UFBA-2_b1c137e4d0cfb58ffc6f4a73b0cecf01
oai_identifier_str oai:repositorio.ufba.br:ri/32475
network_acronym_str UFBA-2
network_name_str Repositório Institucional da UFBA
repository_id_str 1932
spelling Silva, Bruno Carreiro daSant'Anna, Cláudio NogueiraRocha, NeylorChavez, Christina Von Flach Garcia2020-12-10T19:13:51Z2020-12-10T19:13:51Z2016-01Silva, Bruno [et al.]. The effect of automatic concern mapping strategies on conceptual cohesion measurement. Information and Software Technology, Canadá, vol. 75, p. 56–70, jul., 2016, doi:10.1016/j.infsof.2016.03.006. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0950584916300520#!. Acesso em: jan. 2016.0950-5849http://repositorio.ufba.br/ri/handle/ri/32475v. 75Context: Cohesion has been recognized as an important quality attribute of software design across decades. It can be defined as the degree to which a module is focused on a single concern of software. A concern is any concept, feature, requirement or property of the problem or solution domain. Conceptual cohesion is an alternative way of cohesion measurement based on what concerns each module addresses. Therefore, adopting a strategy to map concerns to source code elements is challenging but necessary. Objective: We aim at providing empirical evidence about whether automatic concern mapping strategies are already ready to be used effectively for conceptual cohesion measurement. Method: We carried out an empirical study to assess the ability of conceptual cohesion measurement using different automatic concern mapping strategies in selecting the least cohesive modules. Results: Conceptual cohesion measurements over the two analyzed mapping strategies performed weakly in the ability of selecting the least cohesive modules. We then provide a discussion to explain the reasons. Conclusion: Concern mapping strategies should be carefully chosen for conceptual cohesion measure- ment, specially if automatic mapping is under consideration. Manual mapping is still the most reliable way for computing conceptual cohesion. We pointed out limitations in automatic mapping strategies that go beyond conceptual cohesion measurement purposes and which should be considered in future research or applications in industry.Submitted by Christina Chavez (flach@ufba.br) on 2020-12-07T17:28:43Z No. of bitstreams: 1 preprint_IST_2016_The_Effect_of_Automatic_Concern_Mapping_Strategies.pdf: 808163 bytes, checksum: 7477421c55e70e20a9c414e3d87dcd05 (MD5)Approved for entry into archive by Solange Rocha (soluny@gmail.com) on 2020-12-10T19:13:49Z (GMT) No. of bitstreams: 1 preprint_IST_2016_The_Effect_of_Automatic_Concern_Mapping_Strategies.pdf: 808163 bytes, checksum: 7477421c55e70e20a9c414e3d87dcd05 (MD5)Made available in DSpace on 2020-12-10T19:13:51Z (GMT). No. of bitstreams: 1 preprint_IST_2016_The_Effect_of_Automatic_Concern_Mapping_Strategies.pdf: 808163 bytes, checksum: 7477421c55e70e20a9c414e3d87dcd05 (MD5) Previous issue date: 2016-01Alberta, CanadáElsevierBrasilhttp://www.sciencedirect.com/science/article/pii/S0950584916300520reponame:Repositório Institucional da UFBAinstname:Universidade Federal da Bahia (UFBA)instacron:UFBAModule cohesionCohesion metricsConcern mappingComparative empirical studyThe effect of automatic concern mapping strategies on conceptual cohesion measurementinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccessengORIGINALpreprint_IST_2016_The_Effect_of_Automatic_Concern_Mapping_Strategies.pdfpreprint_IST_2016_The_Effect_of_Automatic_Concern_Mapping_Strategies.pdfapplication/pdf808163https://repositorio.ufba.br/bitstream/ri/32475/1/preprint_IST_2016_The_Effect_of_Automatic_Concern_Mapping_Strategies.pdf7477421c55e70e20a9c414e3d87dcd05MD51LICENSElicense.txtlicense.txttext/plain1442https://repositorio.ufba.br/bitstream/ri/32475/2/license.txte3e6f4a9287585a60c07547815529482MD52TEXTpreprint_IST_2016_The_Effect_of_Automatic_Concern_Mapping_Strategies.pdf.txtpreprint_IST_2016_The_Effect_of_Automatic_Concern_Mapping_Strategies.pdf.txtExtracted texttext/plain98115https://repositorio.ufba.br/bitstream/ri/32475/3/preprint_IST_2016_The_Effect_of_Automatic_Concern_Mapping_Strategies.pdf.txt8b9f9020dbec26c6b6cb3d0b113bf1dbMD53ri/324752022-03-10 14:22:04.501oai:repositorio.ufba.br:ri/32475VGVybW8gZGUgTGljZW4/YSwgbj9vIGV4Y2x1c2l2bywgcGFyYSBvIGRlcD9zaXRvIG5vIFJlcG9zaXQ/cmlvIEluc3RpdHVjaW9uYWwgZGEgVUZCQS4KCiBQZWxvIHByb2Nlc3NvIGRlIHN1Ym1pc3M/Pz8/byBkZSBkb2N1bWVudG9zLCBvIGF1dG9yIG91IHNldSByZXByZXNlbnRhbnRlIGxlZ2FsLCBhbyBhY2VpdGFyIGVzc2UgdGVybW8gZGUgbGljZW4/Pz8/YSwgY29uY2VkZSBhbyBSZXBvc2l0Pz8/P3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRhIEJhaGlhIG8gZGlyZWl0byBkZSBtYW50ZXIgdW1hIGM/Pz8/cGlhIGVtIHNldSByZXBvc2l0Pz8/P3JpbyBjb20gYSBmaW5hbGlkYWRlLCBwcmltZWlyYSwgZGUgcHJlc2VydmE/Pz8/Pz8/P28uIAoKRXNzZXMgdGVybW9zLCBuPz8/P28gZXhjbHVzaXZvcywgbWFudD8/Pz9tIG9zIGRpcmVpdG9zIGRlIGF1dG9yL2NvcHlyaWdodCwgbWFzIGVudGVuZGUgbyBkb2N1bWVudG8gY29tbyBwYXJ0ZSBkbyBhY2Vydm8gaW50ZWxlY3R1YWwgZGVzc2EgVW5pdmVyc2lkYWRlLgoKIFBhcmEgb3MgZG9jdW1lbnRvcyBwdWJsaWNhZG9zIGNvbSByZXBhc3NlIGRlIGRpcmVpdG9zIGRlIGRpc3RyaWJ1aT8/Pz8/Pz8/bywgZXNzZSB0ZXJtbyBkZSBsaWNlbj8/Pz9hIGVudGVuZGUgcXVlOgoKIE1hbnRlbmRvIG9zIGRpcmVpdG9zIGF1dG9yYWlzLCByZXBhc3NhZG9zIGEgdGVyY2Vpcm9zLCBlbSBjYXNvIGRlIHB1YmxpY2E/Pz8/Pz8/P2VzLCBvIHJlcG9zaXQ/Pz8/cmlvIHBvZGUgcmVzdHJpbmdpciBvIGFjZXNzbyBhbyB0ZXh0byBpbnRlZ3JhbCwgbWFzIGxpYmVyYSBhcyBpbmZvcm1hPz8/Pz8/Pz9lcyBzb2JyZSBvIGRvY3VtZW50byAoTWV0YWRhZG9zIGRlc2NyaXRpdm9zKS4KCiBEZXN0YSBmb3JtYSwgYXRlbmRlbmRvIGFvcyBhbnNlaW9zIGRlc3NhIHVuaXZlcnNpZGFkZSBlbSBtYW50ZXIgc3VhIHByb2R1Pz8/Pz8/Pz9vIGNpZW50Pz8/P2ZpY2EgY29tIGFzIHJlc3RyaT8/Pz8/Pz8/ZXMgaW1wb3N0YXMgcGVsb3MgZWRpdG9yZXMgZGUgcGVyaT8/Pz9kaWNvcy4KCiBQYXJhIGFzIHB1YmxpY2E/Pz8/Pz8/P2VzIHNlbSBpbmljaWF0aXZhcyBxdWUgc2VndWVtIGEgcG9sPz8/P3RpY2EgZGUgQWNlc3NvIEFiZXJ0bywgb3MgZGVwPz8/P3NpdG9zIGNvbXB1bHM/Pz8/cmlvcyBuZXNzZSByZXBvc2l0Pz8/P3JpbyBtYW50Pz8/P20gb3MgZGlyZWl0b3MgYXV0b3JhaXMsIG1hcyBtYW50Pz8/P20gYWNlc3NvIGlycmVzdHJpdG8gYW9zIG1ldGFkYWRvcyBlIHRleHRvIGNvbXBsZXRvLiBBc3NpbSwgYSBhY2VpdGE/Pz8/Pz8/P28gZGVzc2UgdGVybW8gbj8/Pz9vIG5lY2Vzc2l0YSBkZSBjb25zZW50aW1lbnRvIHBvciBwYXJ0ZSBkZSBhdXRvcmVzL2RldGVudG9yZXMgZG9zIGRpcmVpdG9zLCBwb3IgZXN0YXJlbSBlbSBpbmljaWF0aXZhcyBkZSBhY2Vzc28gYWJlcnRvLgo=Repositório InstitucionalPUBhttp://192.188.11.11:8080/oai/requestopendoar:19322022-03-10T17:22:04Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)false
dc.title.pt_BR.fl_str_mv The effect of automatic concern mapping strategies on conceptual cohesion measurement
title The effect of automatic concern mapping strategies on conceptual cohesion measurement
spellingShingle The effect of automatic concern mapping strategies on conceptual cohesion measurement
Silva, Bruno Carreiro da
Module cohesion
Cohesion metrics
Concern mapping
Comparative empirical study
title_short The effect of automatic concern mapping strategies on conceptual cohesion measurement
title_full The effect of automatic concern mapping strategies on conceptual cohesion measurement
title_fullStr The effect of automatic concern mapping strategies on conceptual cohesion measurement
title_full_unstemmed The effect of automatic concern mapping strategies on conceptual cohesion measurement
title_sort The effect of automatic concern mapping strategies on conceptual cohesion measurement
author Silva, Bruno Carreiro da
author_facet Silva, Bruno Carreiro da
Sant'Anna, Cláudio Nogueira
Rocha, Neylor
Chavez, Christina Von Flach Garcia
author_role author
author2 Sant'Anna, Cláudio Nogueira
Rocha, Neylor
Chavez, Christina Von Flach Garcia
author2_role author
author
author
dc.contributor.author.fl_str_mv Silva, Bruno Carreiro da
Sant'Anna, Cláudio Nogueira
Rocha, Neylor
Chavez, Christina Von Flach Garcia
dc.subject.por.fl_str_mv Module cohesion
Cohesion metrics
Concern mapping
Comparative empirical study
topic Module cohesion
Cohesion metrics
Concern mapping
Comparative empirical study
description Context: Cohesion has been recognized as an important quality attribute of software design across decades. It can be defined as the degree to which a module is focused on a single concern of software. A concern is any concept, feature, requirement or property of the problem or solution domain. Conceptual cohesion is an alternative way of cohesion measurement based on what concerns each module addresses. Therefore, adopting a strategy to map concerns to source code elements is challenging but necessary. Objective: We aim at providing empirical evidence about whether automatic concern mapping strategies are already ready to be used effectively for conceptual cohesion measurement. Method: We carried out an empirical study to assess the ability of conceptual cohesion measurement using different automatic concern mapping strategies in selecting the least cohesive modules. Results: Conceptual cohesion measurements over the two analyzed mapping strategies performed weakly in the ability of selecting the least cohesive modules. We then provide a discussion to explain the reasons. Conclusion: Concern mapping strategies should be carefully chosen for conceptual cohesion measure- ment, specially if automatic mapping is under consideration. Manual mapping is still the most reliable way for computing conceptual cohesion. We pointed out limitations in automatic mapping strategies that go beyond conceptual cohesion measurement purposes and which should be considered in future research or applications in industry.
publishDate 2016
dc.date.issued.fl_str_mv 2016-01
dc.date.accessioned.fl_str_mv 2020-12-10T19:13:51Z
dc.date.available.fl_str_mv 2020-12-10T19:13:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv Silva, Bruno [et al.]. The effect of automatic concern mapping strategies on conceptual cohesion measurement. Information and Software Technology, Canadá, vol. 75, p. 56–70, jul., 2016, doi:10.1016/j.infsof.2016.03.006. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0950584916300520#!. Acesso em: jan. 2016.
dc.identifier.uri.fl_str_mv http://repositorio.ufba.br/ri/handle/ri/32475
dc.identifier.issn.none.fl_str_mv 0950-5849
dc.identifier.number.pt_BR.fl_str_mv v. 75
identifier_str_mv Silva, Bruno [et al.]. The effect of automatic concern mapping strategies on conceptual cohesion measurement. Information and Software Technology, Canadá, vol. 75, p. 56–70, jul., 2016, doi:10.1016/j.infsof.2016.03.006. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0950584916300520#!. Acesso em: jan. 2016.
0950-5849
v. 75
url http://repositorio.ufba.br/ri/handle/ri/32475
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Elsevier
dc.source.pt_BR.fl_str_mv http://www.sciencedirect.com/science/article/pii/S0950584916300520
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFBA
instname:Universidade Federal da Bahia (UFBA)
instacron:UFBA
instname_str Universidade Federal da Bahia (UFBA)
instacron_str UFBA
institution UFBA
reponame_str Repositório Institucional da UFBA
collection Repositório Institucional da UFBA
bitstream.url.fl_str_mv https://repositorio.ufba.br/bitstream/ri/32475/1/preprint_IST_2016_The_Effect_of_Automatic_Concern_Mapping_Strategies.pdf
https://repositorio.ufba.br/bitstream/ri/32475/2/license.txt
https://repositorio.ufba.br/bitstream/ri/32475/3/preprint_IST_2016_The_Effect_of_Automatic_Concern_Mapping_Strategies.pdf.txt
bitstream.checksum.fl_str_mv 7477421c55e70e20a9c414e3d87dcd05
e3e6f4a9287585a60c07547815529482
8b9f9020dbec26c6b6cb3d0b113bf1db
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)
repository.mail.fl_str_mv
_version_ 1808459618822651904