Aprendizado de máquina para redução do tráfego de dados e da latência na névoa das coisas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFBA |
Texto Completo: | http://repositorio.ufba.br/ri/handle/ri/33634 |
Resumo: | The Internet of Things (IoT) has produced infrastructures and applications that generate large amounts of data. These data are usually data streams, that have the characteristic of being continuous and infinite and also have the peculiarity of modifying their behavior over time. Due to the large capacity of storage, data processing, and provisioning of resources, this data is generally processed and analyzed in cloud computing environments. Although Cloud Computing provides the IoT infrastructure with adequate scalability and resource centric features, the distance between devices and the cloud can impose limitations to achieve low latency in data traffic. In order to maintain scalability, achieve low latency and reduce data traffic between the IoT devices and the Cloud, the Fog Computing was proposed. Although the Fog Computing paradigm establishes resource availability at the edge of the network, the technologies and techniques currently used for IoT data processing and analysis may not be sufficient to support the continuous and unlimited data stream that IoT platforms produce. In this way, this work presents an approach for processing and analyzing data stream from the Internet of Things in real time in Fog. The main advantage of using our approach is the possibility of reducing the amount of data transmitted on the network infrastructure, which allows, as a consequence, to perform an online data modeling, by detecting changes in data behavior, and a reduction of the Internet usage. In addition, the proposed platform does not require a constant Internet connection. Finally, we evaluate the proposal from the perspective of performance in a scenario of intelligent objects at the edge of the network. |
id |
UFBA-2_f11ecd034bcfe183ccea68178f5f6e5d |
---|---|
oai_identifier_str |
oai:repositorio.ufba.br:ri/33634 |
network_acronym_str |
UFBA-2 |
network_name_str |
Repositório Institucional da UFBA |
repository_id_str |
1932 |
spelling |
Alencar, Brenno de MelloAlencar, Brenno de MelloPrazeres, Cássio Vinícius SerafimRios, Ricardo AraújoMendonça Neto, Manoel Gomes deDelicato, Flavia Coimbra2021-06-25T20:07:16Z2021-06-25T20:07:16Z2021-06-252020-09-26http://repositorio.ufba.br/ri/handle/ri/33634The Internet of Things (IoT) has produced infrastructures and applications that generate large amounts of data. These data are usually data streams, that have the characteristic of being continuous and infinite and also have the peculiarity of modifying their behavior over time. Due to the large capacity of storage, data processing, and provisioning of resources, this data is generally processed and analyzed in cloud computing environments. Although Cloud Computing provides the IoT infrastructure with adequate scalability and resource centric features, the distance between devices and the cloud can impose limitations to achieve low latency in data traffic. In order to maintain scalability, achieve low latency and reduce data traffic between the IoT devices and the Cloud, the Fog Computing was proposed. Although the Fog Computing paradigm establishes resource availability at the edge of the network, the technologies and techniques currently used for IoT data processing and analysis may not be sufficient to support the continuous and unlimited data stream that IoT platforms produce. In this way, this work presents an approach for processing and analyzing data stream from the Internet of Things in real time in Fog. The main advantage of using our approach is the possibility of reducing the amount of data transmitted on the network infrastructure, which allows, as a consequence, to perform an online data modeling, by detecting changes in data behavior, and a reduction of the Internet usage. In addition, the proposed platform does not require a constant Internet connection. Finally, we evaluate the proposal from the perspective of performance in a scenario of intelligent objects at the edge of the network.The Internet of Things (IoT) has produced infrastructures and applications that generate large amounts of data. These data are usually data streams, that have the characteristic of being continuous and infinite and also have the peculiarity of modifying their behavior over time. Due to the large capacity of storage, data processing and provisioning of resources, this data is generally processed and analyzed in cloud computing environments. Although Cloud Computing provides the IoT infrastructure with adequate scalability and resource centric features, the distance between devices and the cloud can impose limitations to achieve low latency in data traffic. In order to maintain scalability, achieve low latency and reduce data traffic between the IoT devices and the Cloud, the Fog Computing was proposed. Although the Fog Computing paradigm establishes resource availability at the edge of the network, the technologies and techniques currently used for IoT data processing and analysis may not be sufficient to support the continuous and unlimited data stream that IoT platforms produce. In this way, this work presents an approach for processing and analyzing data stream from the Internet of Things in real time in Fog. The main advantage of using our approach is the possibility of reducing the amount of data transmitted on the network infrastructure, which allows, as a consequence, to perform an online data modeling, by detecting changes in data behavior, and a reduction of the Internet usage. In addition, the proposed platform does not require a constant Internet connection. Finally, we evaluate the proposal from the perspective of performance in a scenario of intelligent objects at the edge of the network.Submitted by Brenno de Mello Alencar (brennodemello.bm@gmail.com) on 2021-04-19T22:31:24Z No. of bitstreams: 1 Dissertao-Brenno-Mello-correcoes.pdf: 3490579 bytes, checksum: 1cf679d20de4bb82a9d14336807275c0 (MD5)Approved for entry into archive by Solange Rocha (soluny@gmail.com) on 2021-06-25T20:07:16Z (GMT) No. of bitstreams: 1 Dissertao-Brenno-Mello-correcoes.pdf: 3490579 bytes, checksum: 1cf679d20de4bb82a9d14336807275c0 (MD5)Made available in DSpace on 2021-06-25T20:07:16Z (GMT). No. of bitstreams: 1 Dissertao-Brenno-Mello-correcoes.pdf: 3490579 bytes, checksum: 1cf679d20de4bb82a9d14336807275c0 (MD5)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Ciências Exatas e da TerraCiência da ComputaçãoSistemas de ComputaçãoInternet das CoisasMineração de dados (Computação)Concept DriftWavelets (Matemática)Computação em NévoaNévoa das CoisasRedes neurais artificiaisFluxo de dados (Computadores)Aprendizado de máquina para redução do tráfego de dados e da latência na névoa das coisasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal da BahiaInstituto de Matemática e Estatísticaem Ciência da ComputaçãoUFBAbrasilinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFBAinstname:Universidade Federal da Bahia (UFBA)instacron:UFBAORIGINALDissertao-Brenno-Mello-correcoes.pdfDissertao-Brenno-Mello-correcoes.pdfapplication/pdf3490579https://repositorio.ufba.br/bitstream/ri/33634/1/Dissertao-Brenno-Mello-correcoes.pdf1cf679d20de4bb82a9d14336807275c0MD51LICENSElicense.txtlicense.txttext/plain1442https://repositorio.ufba.br/bitstream/ri/33634/2/license.txt817035eff4c4c7dda1d546e170ee2a1aMD52TEXTDissertao-Brenno-Mello-correcoes.pdf.txtDissertao-Brenno-Mello-correcoes.pdf.txtExtracted texttext/plain213404https://repositorio.ufba.br/bitstream/ri/33634/3/Dissertao-Brenno-Mello-correcoes.pdf.txt8f7c4eca2e5f758071fd0fa09ecde90eMD53ri/336342022-07-05 14:04:30.368oai:repositorio.ufba.br:ri/33634VGVybW8gZGUgTGljZW7vv71hLCBu77+9byBleGNsdXNpdm8sIHBhcmEgbyBkZXDvv71zaXRvIG5vIFJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVRkJBLgoKIFBlbG8gcHJvY2Vzc28gZGUgc3VibWlzc8ODwqNvIGRlIGRvY3VtZW50b3MsIG8gYXV0b3Igb3Ugc2V1IHJlcHJlc2VudGFudGUgbGVnYWwsIGFvIGFjZWl0YXIgZXNzZSB0ZXJtbyBkZSBsaWNlbsODwqdhLCBjb25jZWRlIGFvIFJlcG9zaXTDg8KzcmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGEgQmFoaWEgbyBkaXJlaXRvIGRlIG1hbnRlciB1bWEgY8ODwrNwaWEgZW0gc2V1IHJlcG9zaXTDg8KzcmlvIGNvbSBhIGZpbmFsaWRhZGUsIHByaW1laXJhLCBkZSBwcmVzZXJ2YcODwqfDg8Kjby4gCgpFc3NlcyB0ZXJtb3MsIG7Dg8KjbyBleGNsdXNpdm9zLCBtYW50w4PCqW0gb3MgZGlyZWl0b3MgZGUgYXV0b3IvY29weXJpZ2h0LCBtYXMgZW50ZW5kZSBvIGRvY3VtZW50byBjb21vIHBhcnRlIGRvIGFjZXJ2byBpbnRlbGVjdHVhbCBkZXNzYSBVbml2ZXJzaWRhZGUuCgogUGFyYSBvcyBkb2N1bWVudG9zIHB1YmxpY2Fkb3MgY29tIHJlcGFzc2UgZGUgZGlyZWl0b3MgZGUgZGlzdHJpYnVpw4PCp8ODwqNvLCBlc3NlIHRlcm1vIGRlIGxpY2Vuw4PCp2EgZW50ZW5kZSBxdWU6CgogTWFudGVuZG8gb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHJlcGFzc2Fkb3MgYSB0ZXJjZWlyb3MsIGVtIGNhc28gZGUgcHVibGljYcODwqfDg8K1ZXMsIG8gcmVwb3NpdMODwrNyaW8gcG9kZSByZXN0cmluZ2lyIG8gYWNlc3NvIGFvIHRleHRvIGludGVncmFsLCBtYXMgbGliZXJhIGFzIGluZm9ybWHDg8Knw4PCtWVzIHNvYnJlIG8gZG9jdW1lbnRvIChNZXRhZGFkb3MgZGVzY3JpdGl2b3MpLgoKIERlc3RhIGZvcm1hLCBhdGVuZGVuZG8gYW9zIGFuc2Vpb3MgZGVzc2EgdW5pdmVyc2lkYWRlIGVtIG1hbnRlciBzdWEgcHJvZHXDg8Knw4PCo28gY2llbnTDg8KtZmljYSBjb20gYXMgcmVzdHJpw4PCp8ODwrVlcyBpbXBvc3RhcyBwZWxvcyBlZGl0b3JlcyBkZSBwZXJpw4PCs2RpY29zLgoKIFBhcmEgYXMgcHVibGljYcODwqfDg8K1ZXMgc2VtIGluaWNpYXRpdmFzIHF1ZSBzZWd1ZW0gYSBwb2zDg8KtdGljYSBkZSBBY2Vzc28gQWJlcnRvLCBvcyBkZXDDg8Kzc2l0b3MgY29tcHVsc8ODwrNyaW9zIG5lc3NlIHJlcG9zaXTDg8KzcmlvIG1hbnTDg8KpbSBvcyBkaXJlaXRvcyBhdXRvcmFpcywgbWFzIG1hbnTDg8KpbSBhY2Vzc28gaXJyZXN0cml0byBhb3MgbWV0YWRhZG9zIGUgdGV4dG8gY29tcGxldG8uIEFzc2ltLCBhIGFjZWl0YcODwqfDg8KjbyBkZXNzZSB0ZXJtbyBuw4PCo28gbmVjZXNzaXRhIGRlIGNvbnNlbnRpbWVudG8gcG9yIHBhcnRlIGRlIGF1dG9yZXMvZGV0ZW50b3JlcyBkb3MgZGlyZWl0b3MsIHBvciBlc3RhcmVtIGVtIGluaWNpYXRpdmFzIGRlIGFjZXNzbyBhYmVydG8uCg==Repositório InstitucionalPUBhttp://192.188.11.11:8080/oai/requestopendoar:19322022-07-05T17:04:30Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)false |
dc.title.pt_BR.fl_str_mv |
Aprendizado de máquina para redução do tráfego de dados e da latência na névoa das coisas |
title |
Aprendizado de máquina para redução do tráfego de dados e da latência na névoa das coisas |
spellingShingle |
Aprendizado de máquina para redução do tráfego de dados e da latência na névoa das coisas Alencar, Brenno de Mello Ciências Exatas e da Terra Ciência da Computação Sistemas de Computação Internet das Coisas Mineração de dados (Computação) Concept Drift Wavelets (Matemática) Computação em Névoa Névoa das Coisas Redes neurais artificiais Fluxo de dados (Computadores) |
title_short |
Aprendizado de máquina para redução do tráfego de dados e da latência na névoa das coisas |
title_full |
Aprendizado de máquina para redução do tráfego de dados e da latência na névoa das coisas |
title_fullStr |
Aprendizado de máquina para redução do tráfego de dados e da latência na névoa das coisas |
title_full_unstemmed |
Aprendizado de máquina para redução do tráfego de dados e da latência na névoa das coisas |
title_sort |
Aprendizado de máquina para redução do tráfego de dados e da latência na névoa das coisas |
author |
Alencar, Brenno de Mello |
author_facet |
Alencar, Brenno de Mello |
author_role |
author |
dc.contributor.author.fl_str_mv |
Alencar, Brenno de Mello Alencar, Brenno de Mello |
dc.contributor.advisor1.fl_str_mv |
Prazeres, Cássio Vinícius Serafim |
dc.contributor.advisor-co1.fl_str_mv |
Rios, Ricardo Araújo |
dc.contributor.referee1.fl_str_mv |
Mendonça Neto, Manoel Gomes de Delicato, Flavia Coimbra |
contributor_str_mv |
Prazeres, Cássio Vinícius Serafim Rios, Ricardo Araújo Mendonça Neto, Manoel Gomes de Delicato, Flavia Coimbra |
dc.subject.cnpq.fl_str_mv |
Ciências Exatas e da Terra Ciência da Computação Sistemas de Computação |
topic |
Ciências Exatas e da Terra Ciência da Computação Sistemas de Computação Internet das Coisas Mineração de dados (Computação) Concept Drift Wavelets (Matemática) Computação em Névoa Névoa das Coisas Redes neurais artificiais Fluxo de dados (Computadores) |
dc.subject.por.fl_str_mv |
Internet das Coisas Mineração de dados (Computação) Concept Drift Wavelets (Matemática) Computação em Névoa Névoa das Coisas Redes neurais artificiais Fluxo de dados (Computadores) |
description |
The Internet of Things (IoT) has produced infrastructures and applications that generate large amounts of data. These data are usually data streams, that have the characteristic of being continuous and infinite and also have the peculiarity of modifying their behavior over time. Due to the large capacity of storage, data processing, and provisioning of resources, this data is generally processed and analyzed in cloud computing environments. Although Cloud Computing provides the IoT infrastructure with adequate scalability and resource centric features, the distance between devices and the cloud can impose limitations to achieve low latency in data traffic. In order to maintain scalability, achieve low latency and reduce data traffic between the IoT devices and the Cloud, the Fog Computing was proposed. Although the Fog Computing paradigm establishes resource availability at the edge of the network, the technologies and techniques currently used for IoT data processing and analysis may not be sufficient to support the continuous and unlimited data stream that IoT platforms produce. In this way, this work presents an approach for processing and analyzing data stream from the Internet of Things in real time in Fog. The main advantage of using our approach is the possibility of reducing the amount of data transmitted on the network infrastructure, which allows, as a consequence, to perform an online data modeling, by detecting changes in data behavior, and a reduction of the Internet usage. In addition, the proposed platform does not require a constant Internet connection. Finally, we evaluate the proposal from the perspective of performance in a scenario of intelligent objects at the edge of the network. |
publishDate |
2020 |
dc.date.submitted.none.fl_str_mv |
2020-09-26 |
dc.date.accessioned.fl_str_mv |
2021-06-25T20:07:16Z |
dc.date.available.fl_str_mv |
2021-06-25T20:07:16Z |
dc.date.issued.fl_str_mv |
2021-06-25 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufba.br/ri/handle/ri/33634 |
url |
http://repositorio.ufba.br/ri/handle/ri/33634 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal da Bahia Instituto de Matemática e Estatística |
dc.publisher.program.fl_str_mv |
em Ciência da Computação |
dc.publisher.initials.fl_str_mv |
UFBA |
dc.publisher.country.fl_str_mv |
brasil |
publisher.none.fl_str_mv |
Universidade Federal da Bahia Instituto de Matemática e Estatística |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFBA instname:Universidade Federal da Bahia (UFBA) instacron:UFBA |
instname_str |
Universidade Federal da Bahia (UFBA) |
instacron_str |
UFBA |
institution |
UFBA |
reponame_str |
Repositório Institucional da UFBA |
collection |
Repositório Institucional da UFBA |
bitstream.url.fl_str_mv |
https://repositorio.ufba.br/bitstream/ri/33634/1/Dissertao-Brenno-Mello-correcoes.pdf https://repositorio.ufba.br/bitstream/ri/33634/2/license.txt https://repositorio.ufba.br/bitstream/ri/33634/3/Dissertao-Brenno-Mello-correcoes.pdf.txt |
bitstream.checksum.fl_str_mv |
1cf679d20de4bb82a9d14336807275c0 817035eff4c4c7dda1d546e170ee2a1a 8f7c4eca2e5f758071fd0fa09ecde90e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA) |
repository.mail.fl_str_mv |
|
_version_ |
1808459626504519680 |