Agrupamento e classificação de séries temporais multivariadas com reconciliações de padrões
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFBA |
Texto Completo: | https://repositorio.ufba.br/handle/ri/36365 |
Resumo: | O armazenamento de uma grande quantidade de dados históricos de processos de produção estimulou o desenvolvimento de técnicas relacionadas à mineração de dados (Data Mining, DM) e à extração de conhecimento útil acerca do processo (Knowledge Discovery in Data bases, KDD). Embora existam muitos trabalhos relacionados à Detecção e Diagnóstico de Falhas (Fault Detection and Diagnosis, FDD), poucos deles são baseados em agrupamento e reconhecimento de padrões em séries temporais, especialmente em séries multivariadas. Além disso, na literatura revisada não há trabalhos relacionados ao reconhecimento de padrões em séries temporais multivariada que considerem o modelo de processo como restrição. À luz disso, este trabalho propõe um novo método para o reconhecimento de padrões em séries temporais uni e multivariada, baseado no algoritimo Fuzzy C-Means (FCM), que considera diretamente a dinâmica do processo no problema de agrupamento visando garantir, desta forma, a viabilidade dos padrões reconhecidos. O método proposto é aplicado em dois estudos de caso, ambos relacionados ao agrupamento e reconhecimento de padrões de operação anormal (falhas) e operação normal. O primeiro estudo de caso compreendeu um Reator Contínuo de Tanque Agitado (Continuous Stirred Tank Reactor, CSTR), que consiste em um processo de referência bem conhecido e utilizado para avaliar estratégias de controle e técnicas de FDD. A segunda aplicação envolveu um cenário industrial real que compreende uma turbina a gás, de escala comercial, localizada na unidade termoelétrica (UTE) Rômulo Almeida, parte integrante do parque da Companhia Brasileira de Petróleo. Os resultados obtidos evidenciam que o algoritmo FCM e uma métrica típica de similariedade entre séries temporais, baseada na Análise de Componentes Principais (PCA), não garantem o reconhecimento de padrões consistentes com a dinâmica do processo, mesmo com bons resultados de classificação e agrupamento. Por outro lado, os resultados obtidos a partir das abordagens de reconciliação propostas neste trabalho mostram a obtenção de padrões consistentes e reconciliados com a realidade dinâmica do processo, sem prejuízo da qualidade dos resultados de agrupamento e classificação. |
id |
UFBA-2_f55393ff8b354b3e0cb6e938b56ad1ff |
---|---|
oai_identifier_str |
oai:repositorio.ufba.br:ri/36365 |
network_acronym_str |
UFBA-2 |
network_name_str |
Repositório Institucional da UFBA |
repository_id_str |
1932 |
spelling |
2022-12-02T13:53:27Z2022-12-02T13:53:27Z2018-09https://repositorio.ufba.br/handle/ri/36365O armazenamento de uma grande quantidade de dados históricos de processos de produção estimulou o desenvolvimento de técnicas relacionadas à mineração de dados (Data Mining, DM) e à extração de conhecimento útil acerca do processo (Knowledge Discovery in Data bases, KDD). Embora existam muitos trabalhos relacionados à Detecção e Diagnóstico de Falhas (Fault Detection and Diagnosis, FDD), poucos deles são baseados em agrupamento e reconhecimento de padrões em séries temporais, especialmente em séries multivariadas. Além disso, na literatura revisada não há trabalhos relacionados ao reconhecimento de padrões em séries temporais multivariada que considerem o modelo de processo como restrição. À luz disso, este trabalho propõe um novo método para o reconhecimento de padrões em séries temporais uni e multivariada, baseado no algoritimo Fuzzy C-Means (FCM), que considera diretamente a dinâmica do processo no problema de agrupamento visando garantir, desta forma, a viabilidade dos padrões reconhecidos. O método proposto é aplicado em dois estudos de caso, ambos relacionados ao agrupamento e reconhecimento de padrões de operação anormal (falhas) e operação normal. O primeiro estudo de caso compreendeu um Reator Contínuo de Tanque Agitado (Continuous Stirred Tank Reactor, CSTR), que consiste em um processo de referência bem conhecido e utilizado para avaliar estratégias de controle e técnicas de FDD. A segunda aplicação envolveu um cenário industrial real que compreende uma turbina a gás, de escala comercial, localizada na unidade termoelétrica (UTE) Rômulo Almeida, parte integrante do parque da Companhia Brasileira de Petróleo. Os resultados obtidos evidenciam que o algoritmo FCM e uma métrica típica de similariedade entre séries temporais, baseada na Análise de Componentes Principais (PCA), não garantem o reconhecimento de padrões consistentes com a dinâmica do processo, mesmo com bons resultados de classificação e agrupamento. Por outro lado, os resultados obtidos a partir das abordagens de reconciliação propostas neste trabalho mostram a obtenção de padrões consistentes e reconciliados com a realidade dinâmica do processo, sem prejuízo da qualidade dos resultados de agrupamento e classificação.The storage of a large amount of historical data in production processes has contributed to the development of techniques related to data mining (DM) and the extraction of useful knowledge about processes (Knowledge Discovery in Data bases, KDD). Although there are many studies related to Fault Detection and Diagnosis (FDD), few of them are based on grouping and pattern recognition in time series, especially in multivariate series. In addition, there are no work related to the recognition of patterns in time series that consider the process model as a constraint. This study proposes a new method for the recognition of patterns in uni and multivariate time series, based on the Fuzzy C-Means (FCM) algorithm, which directly considers the process dynamics in the clustering problem in order to guarantee the viability of the standards recognized. The proposed method is applied in two case studies, both related to clustering and recognition of patterns of abnormal operation (failures) and normal operation. The first case study is a Continuous Stirred Tank Reactor (CSTR), a well-known reference process used to evaluate control strategies and techniques for FDD. The second application involved a real industrial scenario comprising a commercial scale gas turbine located at the Rômulo Almeida thermoelectric plant (UTE), an integral part of the Companhia Brasileira de Petróleo park. The results show that the FCM algorithm and a typical metric of similarity between time series, based on the Principal Component Analysis (PCA), do not guarantee the recognition of patterns consistent with the process dynamics, even if good results are obtained classification and grouping. On the other hand, the results obtained from the reconciliation approaches proposed in this study show the obtaining of consistent and reconciled patterns with the dynamic reality of the process, without prejudice to the quality of the results of grouping and classification.Submitted by Glauber de Assunção Moreira (glauber.moreira@ufba.br) on 2022-11-23T17:41:10Z No. of bitstreams: 1 Dissertacao_Izete Silva_Final_Com_Capa.pdf: 4567560 bytes, checksum: 15817b0d3e83a2dbeff40b0568d78cb6 (MD5)Approved for entry into archive by Biblioteca Engenharia Processamento Técnico (biengproc@ufba.br) on 2022-12-02T13:53:27Z (GMT) No. of bitstreams: 1 Dissertacao_Izete Silva_Final_Com_Capa.pdf: 4567560 bytes, checksum: 15817b0d3e83a2dbeff40b0568d78cb6 (MD5)Made available in DSpace on 2022-12-02T13:53:27Z (GMT). No. of bitstreams: 1 Dissertacao_Izete Silva_Final_Com_Capa.pdf: 4567560 bytes, checksum: 15817b0d3e83a2dbeff40b0568d78cb6 (MD5) Previous issue date: 2018-09porUniversidade Federal da BahiaPrograma de Pós-Graduação em Engenharia Industrial (PEI) UFBABrasilEscola PolitécnicaCluster analysisFuzzy c-meansPattern reconciliationTime seriesCNPQ::ENGENHARIASAnálise de agrupamentoFuzzy c-meansReconciliação de padrõesSéries temporaisAgrupamento e classificação de séries temporais multivariadas com reconciliações de padrõesMestrado Acadêmicoinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersionFontes, Cristiano da HoraEmbiruçu, Marcelo SantosRodriguez, Jorge Laureano MoyaFontes, Cristiano HorasNascimento, EduardoSilva, Flávio Morais de Assishttp://lattes.cnpq.br/9264861599841745Silva, Izete Celestina dos Santosreponame:Repositório Institucional da UFBAinstname:Universidade Federal da Bahia (UFBA)instacron:UFBAinfo:eu-repo/semantics/openAccessORIGINALDissertacao_Izete Silva_Final_Com_Capa.pdfDissertacao_Izete Silva_Final_Com_Capa.pdfapplication/pdf4567560https://repositorio.ufba.br/bitstream/ri/36365/1/Dissertacao_Izete%20Silva_Final_Com_Capa.pdf15817b0d3e83a2dbeff40b0568d78cb6MD51LICENSElicense.txtlicense.txttext/plain1715https://repositorio.ufba.br/bitstream/ri/36365/2/license.txt67bf4f75790b0d8d38d8f112a48ad90bMD52TEXTDissertacao_Izete Silva_Final_Com_Capa.pdf.txtDissertacao_Izete Silva_Final_Com_Capa.pdf.txtExtracted texttext/plain180200https://repositorio.ufba.br/bitstream/ri/36365/3/Dissertacao_Izete%20Silva_Final_Com_Capa.pdf.txt9a24d74e31b185bbf1ce9e640306be0aMD53ri/363652022-12-03 02:04:52.978oai:repositorio.ufba.br:ri/36365TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCBvIGF1dG9yIG91IHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIG5vIGZvcm1hdG8gaW1wcmVzc28gZS9vdSBlbGV0csO0bmljbyBlIGVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyAKZm9ybWF0b3Mgw6F1ZGlvIGUvb3UgdsOtZGVvLgoKTyBhdXRvciBvdSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jb3JkYSBxdWUgbyBSZXBvc2l0w7NyaW8gcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHB1YmxpY2HDp8OjbyBwYXJhIHF1YWxxdWVyIG1laW8gZS9vdSBmb3JtYXRvIHBhcmEgZmlucyBkZSBwcmVzZXJ2YcOnw6NvLCBwb2RlbmRvIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrdXAgZSBwcmVzZXJ2YcOnw6NvLgoKTyBhdXRvciBvdSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBkZWNsYXJhIHF1ZSBhIHN1YSBwdWJsaWNhw6fDo28gw6kgb3JpZ2luYWwgZSBxdWUgbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHB1YmxpY2HDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdMOzcmlvIG9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbsOnYSBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlw7pkbyBkYSBwdWJsaWNhw6fDo28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgUFVCTElDQcOHw4NPIE9SQSBERVBPU0lUQURBICBSRVNVTFRFIERFIFVNIFBBVFJPQ8ONTklPIE9VIEFQT0lPIERFIFVNQSAgQUfDik5DSUEgREUgRk9NRU5UTyBPVSBPVVRSTyAKT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08sIENPTU8gVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIApFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKTyBSZXBvc2l0w7NyaW8gc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyLCBjbGFyYW1lbnRlLCBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28gZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Repositório InstitucionalPUBhttp://192.188.11.11:8080/oai/requestopendoar:19322022-12-03T05:04:52Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)false |
dc.title.pt_BR.fl_str_mv |
Agrupamento e classificação de séries temporais multivariadas com reconciliações de padrões |
title |
Agrupamento e classificação de séries temporais multivariadas com reconciliações de padrões |
spellingShingle |
Agrupamento e classificação de séries temporais multivariadas com reconciliações de padrões Silva, Izete Celestina dos Santos CNPQ::ENGENHARIAS Análise de agrupamento Fuzzy c-means Reconciliação de padrões Séries temporais Cluster analysis Fuzzy c-means Pattern reconciliation Time series |
title_short |
Agrupamento e classificação de séries temporais multivariadas com reconciliações de padrões |
title_full |
Agrupamento e classificação de séries temporais multivariadas com reconciliações de padrões |
title_fullStr |
Agrupamento e classificação de séries temporais multivariadas com reconciliações de padrões |
title_full_unstemmed |
Agrupamento e classificação de séries temporais multivariadas com reconciliações de padrões |
title_sort |
Agrupamento e classificação de séries temporais multivariadas com reconciliações de padrões |
author |
Silva, Izete Celestina dos Santos |
author_facet |
Silva, Izete Celestina dos Santos |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Fontes, Cristiano da Hora |
dc.contributor.advisor-co1.fl_str_mv |
Embiruçu, Marcelo Santos |
dc.contributor.referee1.fl_str_mv |
Rodriguez, Jorge Laureano Moya Fontes, Cristiano Horas |
dc.contributor.referee2.fl_str_mv |
Nascimento, Eduardo |
dc.contributor.referee3.fl_str_mv |
Silva, Flávio Morais de Assis |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/9264861599841745 |
dc.contributor.author.fl_str_mv |
Silva, Izete Celestina dos Santos |
contributor_str_mv |
Fontes, Cristiano da Hora Embiruçu, Marcelo Santos Rodriguez, Jorge Laureano Moya Fontes, Cristiano Horas Nascimento, Eduardo Silva, Flávio Morais de Assis |
dc.subject.cnpq.fl_str_mv |
CNPQ::ENGENHARIAS |
topic |
CNPQ::ENGENHARIAS Análise de agrupamento Fuzzy c-means Reconciliação de padrões Séries temporais Cluster analysis Fuzzy c-means Pattern reconciliation Time series |
dc.subject.por.fl_str_mv |
Análise de agrupamento Fuzzy c-means Reconciliação de padrões Séries temporais |
dc.subject.other.pt_BR.fl_str_mv |
Cluster analysis Fuzzy c-means Pattern reconciliation Time series |
description |
O armazenamento de uma grande quantidade de dados históricos de processos de produção estimulou o desenvolvimento de técnicas relacionadas à mineração de dados (Data Mining, DM) e à extração de conhecimento útil acerca do processo (Knowledge Discovery in Data bases, KDD). Embora existam muitos trabalhos relacionados à Detecção e Diagnóstico de Falhas (Fault Detection and Diagnosis, FDD), poucos deles são baseados em agrupamento e reconhecimento de padrões em séries temporais, especialmente em séries multivariadas. Além disso, na literatura revisada não há trabalhos relacionados ao reconhecimento de padrões em séries temporais multivariada que considerem o modelo de processo como restrição. À luz disso, este trabalho propõe um novo método para o reconhecimento de padrões em séries temporais uni e multivariada, baseado no algoritimo Fuzzy C-Means (FCM), que considera diretamente a dinâmica do processo no problema de agrupamento visando garantir, desta forma, a viabilidade dos padrões reconhecidos. O método proposto é aplicado em dois estudos de caso, ambos relacionados ao agrupamento e reconhecimento de padrões de operação anormal (falhas) e operação normal. O primeiro estudo de caso compreendeu um Reator Contínuo de Tanque Agitado (Continuous Stirred Tank Reactor, CSTR), que consiste em um processo de referência bem conhecido e utilizado para avaliar estratégias de controle e técnicas de FDD. A segunda aplicação envolveu um cenário industrial real que compreende uma turbina a gás, de escala comercial, localizada na unidade termoelétrica (UTE) Rômulo Almeida, parte integrante do parque da Companhia Brasileira de Petróleo. Os resultados obtidos evidenciam que o algoritmo FCM e uma métrica típica de similariedade entre séries temporais, baseada na Análise de Componentes Principais (PCA), não garantem o reconhecimento de padrões consistentes com a dinâmica do processo, mesmo com bons resultados de classificação e agrupamento. Por outro lado, os resultados obtidos a partir das abordagens de reconciliação propostas neste trabalho mostram a obtenção de padrões consistentes e reconciliados com a realidade dinâmica do processo, sem prejuízo da qualidade dos resultados de agrupamento e classificação. |
publishDate |
2018 |
dc.date.issued.fl_str_mv |
2018-09 |
dc.date.accessioned.fl_str_mv |
2022-12-02T13:53:27Z |
dc.date.available.fl_str_mv |
2022-12-02T13:53:27Z |
dc.type.driver.fl_str_mv |
Mestrado Acadêmico info:eu-repo/semantics/masterThesis |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufba.br/handle/ri/36365 |
url |
https://repositorio.ufba.br/handle/ri/36365 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal da Bahia |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Industrial (PEI) |
dc.publisher.initials.fl_str_mv |
UFBA |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Escola Politécnica |
publisher.none.fl_str_mv |
Universidade Federal da Bahia |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFBA instname:Universidade Federal da Bahia (UFBA) instacron:UFBA |
instname_str |
Universidade Federal da Bahia (UFBA) |
instacron_str |
UFBA |
institution |
UFBA |
reponame_str |
Repositório Institucional da UFBA |
collection |
Repositório Institucional da UFBA |
bitstream.url.fl_str_mv |
https://repositorio.ufba.br/bitstream/ri/36365/1/Dissertacao_Izete%20Silva_Final_Com_Capa.pdf https://repositorio.ufba.br/bitstream/ri/36365/2/license.txt https://repositorio.ufba.br/bitstream/ri/36365/3/Dissertacao_Izete%20Silva_Final_Com_Capa.pdf.txt |
bitstream.checksum.fl_str_mv |
15817b0d3e83a2dbeff40b0568d78cb6 67bf4f75790b0d8d38d8f112a48ad90b 9a24d74e31b185bbf1ce9e640306be0a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA) |
repository.mail.fl_str_mv |
|
_version_ |
1808459655319388160 |