Decision tree applied in classifying the occurrence of cyber claims in banking sector companies
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Artigo |
Idioma: | eng por |
Título da fonte: | Contextus (Fortaleza. Online) |
Texto Completo: | http://periodicos.ufc.br/contextus/article/view/83423 |
Resumo: | The study aimed to predict cyber claims in companies in the banking sector using a decision tree. To this end, 683 cases of cyber losses were extracted from an operational risk database. The independent variables considered in the modeling were the region of domicile, the size of the company and, as main explanatory variable, revenue. The classification reached 89% of global hits. The modeling in question guarantees a good classification quality and better fit when compared to traditional GLM modeling. The results of this work are useful and can act in an innovative way as a tool to support the decision making of insurers, aiming at useful responses to the management of cyber risks. |
id |
UFC-12_70b2e6c86078738f215653a2f95d822c |
---|---|
oai_identifier_str |
oai:periodicos.ufc:article/83423 |
network_acronym_str |
UFC-12 |
network_name_str |
Contextus (Fortaleza. Online) |
repository_id_str |
|
spelling |
Decision tree applied in classifying the occurrence of cyber claims in banking sector companiesÁrbol de decisión aplicado en la clasificación de la ocurrencia de siniestros cibernéticos en empresas del sector bancario Árvore de decisão aplicada na classificação de ocorrência de sinistro cibernético em empresas do setor bancário risk managementcyber riskdecision treeGLMbanking sectorgerenciamento de riscorisco cibernéticoárvore de decisãoGLMsetor bancáriogestión de riesgosciberriesgoárbol de decisionesGLMsector bancarioThe study aimed to predict cyber claims in companies in the banking sector using a decision tree. To this end, 683 cases of cyber losses were extracted from an operational risk database. The independent variables considered in the modeling were the region of domicile, the size of the company and, as main explanatory variable, revenue. The classification reached 89% of global hits. The modeling in question guarantees a good classification quality and better fit when compared to traditional GLM modeling. The results of this work are useful and can act in an innovative way as a tool to support the decision making of insurers, aiming at useful responses to the management of cyber risks.El estudio tuvo como objetivo predecir ciber siniestros en empresas del sector bancario utilizando un árbol de decisión. Para ello, se extrajeron de una base de datos de riesgo operacional 683 casos de ciberpérdidas. Las variables independientes consideradas en la modelación fueron la región de domicilio, el tamaño de la empresa y, como principal variable explicativa, los ingresos. La clasificación alcanzó 89% de los hits globales. El modelado en cuestión garantiza una buena calidad de clasificación y un mejor ajuste en comparación con el modelado GLM tradicional. Los resultados son útiles y pueden actuar de forma innovadora como una herramienta de apoyo a la toma de decisiones de las aseguradoras, buscando respuestas útiles a la gestión de los riesgos cibernéticos. O estudo teve como objetivo a previsão de sinistros cibernéticos em empresas do setor bancário através do uso de árvore de decisão. Para tanto, foram extraídos 683 casos de perdas cibernéticas de um banco de dados de risco operacional. As variáveis independentes consideradas na modelagem foram a região de domicílio, o porte da empresa e, como principal variável explicativa, o faturamento. A classificação apresentou 89% de acertos globais. A modelagem em questão garante uma boa qualidade de classificação e melhor ajuste quando comparada a modelagem tradicional GLM. Os resultados desse trabalho são úteis e podem atuar de forma inovadora como ferramenta de apoio à tomada de decisão das seguradoras, visando respostas úteis ao gerenciamento de riscos cibernéticos. FEAAC/UFC2023-10-17info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/pdfapplication/ziphttp://periodicos.ufc.br/contextus/article/view/8342310.19094/contextus.2023.83423Contextus - Contemporary Journal of Economics and Management; Vol. 21 No. esp.1 (2023): Special Edition - Actuarial Sciences; e83423Contextus – Revista Contemporánea de Economía y Gestión; Vol. 21 Núm. esp.1 (2023): Edición Especial - Ciencias Actuariales; e83423Contextus – Revista Contemporânea de Economia e Gestão; v. 21 n. esp.1 (2023): Edição Especial - Ciências Atuariais; e834232178-92581678-2089reponame:Contextus (Fortaleza. Online)instname:Universidade Federal do Ceará (UFC)instacron:UFCengporhttp://periodicos.ufc.br/contextus/article/view/83423/249768http://periodicos.ufc.br/contextus/article/view/83423/249769http://periodicos.ufc.br/contextus/article/view/83423/250230http://periodicos.ufc.br/contextus/article/view/83423/250231http://periodicos.ufc.br/contextus/article/view/83423/250232http://periodicos.ufc.br/contextus/article/view/83423/250233Copyright (c) 2023 Revista: apenas para a 1a. publicaçãohttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccess Azevedo, Alana Katielli Nogueira2024-02-28T23:43:27Zoai:periodicos.ufc:article/83423Revistahttp://periodicos.ufc.br/contextusPUBhttp://periodicos.ufc.br/contextus/oairevistacontextus@ufc.br2178-92581678-2089opendoar:2024-02-28T23:43:27Contextus (Fortaleza. Online) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Decision tree applied in classifying the occurrence of cyber claims in banking sector companies Árbol de decisión aplicado en la clasificación de la ocurrencia de siniestros cibernéticos en empresas del sector bancario Árvore de decisão aplicada na classificação de ocorrência de sinistro cibernético em empresas do setor bancário |
title |
Decision tree applied in classifying the occurrence of cyber claims in banking sector companies |
spellingShingle |
Decision tree applied in classifying the occurrence of cyber claims in banking sector companies Azevedo, Alana Katielli Nogueira risk management cyber risk decision tree GLM banking sector gerenciamento de risco risco cibernético árvore de decisão GLM setor bancário gestión de riesgos ciberriesgo árbol de decisiones GLM sector bancario |
title_short |
Decision tree applied in classifying the occurrence of cyber claims in banking sector companies |
title_full |
Decision tree applied in classifying the occurrence of cyber claims in banking sector companies |
title_fullStr |
Decision tree applied in classifying the occurrence of cyber claims in banking sector companies |
title_full_unstemmed |
Decision tree applied in classifying the occurrence of cyber claims in banking sector companies |
title_sort |
Decision tree applied in classifying the occurrence of cyber claims in banking sector companies |
author |
Azevedo, Alana Katielli Nogueira |
author_facet |
Azevedo, Alana Katielli Nogueira |
author_role |
author |
dc.contributor.author.fl_str_mv |
Azevedo, Alana Katielli Nogueira |
dc.subject.por.fl_str_mv |
risk management cyber risk decision tree GLM banking sector gerenciamento de risco risco cibernético árvore de decisão GLM setor bancário gestión de riesgos ciberriesgo árbol de decisiones GLM sector bancario |
topic |
risk management cyber risk decision tree GLM banking sector gerenciamento de risco risco cibernético árvore de decisão GLM setor bancário gestión de riesgos ciberriesgo árbol de decisiones GLM sector bancario |
description |
The study aimed to predict cyber claims in companies in the banking sector using a decision tree. To this end, 683 cases of cyber losses were extracted from an operational risk database. The independent variables considered in the modeling were the region of domicile, the size of the company and, as main explanatory variable, revenue. The classification reached 89% of global hits. The modeling in question guarantees a good classification quality and better fit when compared to traditional GLM modeling. The results of this work are useful and can act in an innovative way as a tool to support the decision making of insurers, aiming at useful responses to the management of cyber risks. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-10-17 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://periodicos.ufc.br/contextus/article/view/83423 10.19094/contextus.2023.83423 |
url |
http://periodicos.ufc.br/contextus/article/view/83423 |
identifier_str_mv |
10.19094/contextus.2023.83423 |
dc.language.iso.fl_str_mv |
eng por |
language |
eng por |
dc.relation.none.fl_str_mv |
http://periodicos.ufc.br/contextus/article/view/83423/249768 http://periodicos.ufc.br/contextus/article/view/83423/249769 http://periodicos.ufc.br/contextus/article/view/83423/250230 http://periodicos.ufc.br/contextus/article/view/83423/250231 http://periodicos.ufc.br/contextus/article/view/83423/250232 http://periodicos.ufc.br/contextus/article/view/83423/250233 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2023 Revista: apenas para a 1a. publicação http://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2023 Revista: apenas para a 1a. publicação http://creativecommons.org/licenses/by-nc/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/zip |
dc.publisher.none.fl_str_mv |
FEAAC/UFC |
publisher.none.fl_str_mv |
FEAAC/UFC |
dc.source.none.fl_str_mv |
Contextus - Contemporary Journal of Economics and Management; Vol. 21 No. esp.1 (2023): Special Edition - Actuarial Sciences; e83423 Contextus – Revista Contemporánea de Economía y Gestión; Vol. 21 Núm. esp.1 (2023): Edición Especial - Ciencias Actuariales; e83423 Contextus – Revista Contemporânea de Economia e Gestão; v. 21 n. esp.1 (2023): Edição Especial - Ciências Atuariais; e83423 2178-9258 1678-2089 reponame:Contextus (Fortaleza. Online) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Contextus (Fortaleza. Online) |
collection |
Contextus (Fortaleza. Online) |
repository.name.fl_str_mv |
Contextus (Fortaleza. Online) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
revistacontextus@ufc.br |
_version_ |
1798045750959013888 |