Determination of nitrogen and chlorophyll levels in bean-plant leaves by using spectral vegetation bands and indices

Detalhes bibliográficos
Autor(a) principal: Abrahão,Selma Alves
Data de Publicação: 2013
Outros Autores: Pinto,Francisco de Assis de Carvalho, Queiroz,Daniel Marçal de, Santos,Nerilson Terra, Carneiro,José Eustáquio de Souza
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista ciência agronômica (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-66902013000300007
Resumo: This study aimed to develop classifiers based on different combinations of spectral bands and vegetation indices from original, segmented and reflectance images in order to determine the levels of leaf nitrogen and chlorophyll in the bean, and to define the best time and best variables. A remote-sensing system was used, consisting of a helium balloon and two small-format digital cameras. Besides the individual spectral bands, four vegetation indices were tested: simple ratio, normalized difference, normalized difference in the green band, and modified-chlorophyll absorption. The classifiers proved to be efficient in determining levels of leaf nitrogen and chlorophyll. The best time for determining leaf N content was at 13 DAE (stage V4). The best classifiers for that time used as input variables two indices from segmented reflectance images, one index related to the canopy structure and the other related to chlorophyll, with a Kappa ranging from 0.26 to 0.31. The best time to discriminate leaf chlorophyll content was 21 DAE (stage V4). The best classifier used as input variables two original images, one in the red band and one in the blue with a Kappa of 0.47.
id UFC-2_1d5949d957f1ad88ea19dac45a982a6b
oai_identifier_str oai:scielo:S1806-66902013000300007
network_acronym_str UFC-2
network_name_str Revista ciência agronômica (Online)
repository_id_str
spelling Determination of nitrogen and chlorophyll levels in bean-plant leaves by using spectral vegetation bands and indicesPrecision farmingRemote sensingNitrogen dosageThis study aimed to develop classifiers based on different combinations of spectral bands and vegetation indices from original, segmented and reflectance images in order to determine the levels of leaf nitrogen and chlorophyll in the bean, and to define the best time and best variables. A remote-sensing system was used, consisting of a helium balloon and two small-format digital cameras. Besides the individual spectral bands, four vegetation indices were tested: simple ratio, normalized difference, normalized difference in the green band, and modified-chlorophyll absorption. The classifiers proved to be efficient in determining levels of leaf nitrogen and chlorophyll. The best time for determining leaf N content was at 13 DAE (stage V4). The best classifiers for that time used as input variables two indices from segmented reflectance images, one index related to the canopy structure and the other related to chlorophyll, with a Kappa ranging from 0.26 to 0.31. The best time to discriminate leaf chlorophyll content was 21 DAE (stage V4). The best classifier used as input variables two original images, one in the red band and one in the blue with a Kappa of 0.47.Universidade Federal do Ceará2013-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-66902013000300007Revista Ciência Agronômica v.44 n.3 2013reponame:Revista ciência agronômica (Online)instname:Universidade Federal do Ceará (UFC)instacron:UFC10.1590/S1806-66902013000300007info:eu-repo/semantics/openAccessAbrahão,Selma AlvesPinto,Francisco de Assis de CarvalhoQueiroz,Daniel Marçal deSantos,Nerilson TerraCarneiro,José Eustáquio de Souzaeng2013-05-21T00:00:00Zoai:scielo:S1806-66902013000300007Revistahttp://www.ccarevista.ufc.br/PUBhttps://old.scielo.br/oai/scielo-oai.php||alekdutra@ufc.br|| ccarev@ufc.br1806-66900045-6888opendoar:2013-05-21T00:00Revista ciência agronômica (Online) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv Determination of nitrogen and chlorophyll levels in bean-plant leaves by using spectral vegetation bands and indices
title Determination of nitrogen and chlorophyll levels in bean-plant leaves by using spectral vegetation bands and indices
spellingShingle Determination of nitrogen and chlorophyll levels in bean-plant leaves by using spectral vegetation bands and indices
Abrahão,Selma Alves
Precision farming
Remote sensing
Nitrogen dosage
title_short Determination of nitrogen and chlorophyll levels in bean-plant leaves by using spectral vegetation bands and indices
title_full Determination of nitrogen and chlorophyll levels in bean-plant leaves by using spectral vegetation bands and indices
title_fullStr Determination of nitrogen and chlorophyll levels in bean-plant leaves by using spectral vegetation bands and indices
title_full_unstemmed Determination of nitrogen and chlorophyll levels in bean-plant leaves by using spectral vegetation bands and indices
title_sort Determination of nitrogen and chlorophyll levels in bean-plant leaves by using spectral vegetation bands and indices
author Abrahão,Selma Alves
author_facet Abrahão,Selma Alves
Pinto,Francisco de Assis de Carvalho
Queiroz,Daniel Marçal de
Santos,Nerilson Terra
Carneiro,José Eustáquio de Souza
author_role author
author2 Pinto,Francisco de Assis de Carvalho
Queiroz,Daniel Marçal de
Santos,Nerilson Terra
Carneiro,José Eustáquio de Souza
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Abrahão,Selma Alves
Pinto,Francisco de Assis de Carvalho
Queiroz,Daniel Marçal de
Santos,Nerilson Terra
Carneiro,José Eustáquio de Souza
dc.subject.por.fl_str_mv Precision farming
Remote sensing
Nitrogen dosage
topic Precision farming
Remote sensing
Nitrogen dosage
description This study aimed to develop classifiers based on different combinations of spectral bands and vegetation indices from original, segmented and reflectance images in order to determine the levels of leaf nitrogen and chlorophyll in the bean, and to define the best time and best variables. A remote-sensing system was used, consisting of a helium balloon and two small-format digital cameras. Besides the individual spectral bands, four vegetation indices were tested: simple ratio, normalized difference, normalized difference in the green band, and modified-chlorophyll absorption. The classifiers proved to be efficient in determining levels of leaf nitrogen and chlorophyll. The best time for determining leaf N content was at 13 DAE (stage V4). The best classifiers for that time used as input variables two indices from segmented reflectance images, one index related to the canopy structure and the other related to chlorophyll, with a Kappa ranging from 0.26 to 0.31. The best time to discriminate leaf chlorophyll content was 21 DAE (stage V4). The best classifier used as input variables two original images, one in the red band and one in the blue with a Kappa of 0.47.
publishDate 2013
dc.date.none.fl_str_mv 2013-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-66902013000300007
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-66902013000300007
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1806-66902013000300007
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Universidade Federal do Ceará
publisher.none.fl_str_mv Universidade Federal do Ceará
dc.source.none.fl_str_mv Revista Ciência Agronômica v.44 n.3 2013
reponame:Revista ciência agronômica (Online)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Revista ciência agronômica (Online)
collection Revista ciência agronômica (Online)
repository.name.fl_str_mv Revista ciência agronômica (Online) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv ||alekdutra@ufc.br|| ccarev@ufc.br
_version_ 1750297486696644608