Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC)
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/19361 |
Resumo: | Low rank tensor decomposition has been playing for the last years an important role in many applications such as blind source separation, telecommunications, sensor array processing, neuroscience, chemometrics, and data mining. The Canonical Polyadic tensor decomposition is very attractive when compared to standard matrix-based tools, manly on system identification. In this thesis, we propose: (i) several algorithms to compute specific low rank-approximations: finite/iterative rank-1 approximations, iterative deflation approximations, and orthogonal tensor decompositions. (ii) A new strategy to solve multivariate quadratic systems, where this problem is reduced to a best rank-1 tensor approximation problem. (iii) Theoretical results to study and proof the performance or the convergence of some algorithms. All performances are supported by numerical experiments |
id |
UFC-7_1752f6d24195000d88bd66b5ea77b3bc |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/19361 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC)TeleinformáticaTensor (Cálculo)DeflaçãoLow rank tensor decomposition has been playing for the last years an important role in many applications such as blind source separation, telecommunications, sensor array processing, neuroscience, chemometrics, and data mining. The Canonical Polyadic tensor decomposition is very attractive when compared to standard matrix-based tools, manly on system identification. In this thesis, we propose: (i) several algorithms to compute specific low rank-approximations: finite/iterative rank-1 approximations, iterative deflation approximations, and orthogonal tensor decompositions. (ii) A new strategy to solve multivariate quadratic systems, where this problem is reduced to a best rank-1 tensor approximation problem. (iii) Theoretical results to study and proof the performance or the convergence of some algorithms. All performances are supported by numerical experimentsAlmeida, André Lima Férrer deMota, João César MouraSilva, Alex Pereira da2016-09-01T18:42:06Z2016-09-01T18:42:06Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfSILVA, A. P. Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC). 2016. 124 f. Tese (Doutorado em Engenharia de Teleinformática)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2016.http://www.repositorio.ufc.br/handle/riufc/19361engreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2020-08-24T14:52:53Zoai:repositorio.ufc.br:riufc/19361Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:15:44.795723Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC) |
title |
Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC) |
spellingShingle |
Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC) Silva, Alex Pereira da Teleinformática Tensor (Cálculo) Deflação |
title_short |
Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC) |
title_full |
Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC) |
title_fullStr |
Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC) |
title_full_unstemmed |
Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC) |
title_sort |
Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC) |
author |
Silva, Alex Pereira da |
author_facet |
Silva, Alex Pereira da |
author_role |
author |
dc.contributor.none.fl_str_mv |
Almeida, André Lima Férrer de Mota, João César Moura |
dc.contributor.author.fl_str_mv |
Silva, Alex Pereira da |
dc.subject.por.fl_str_mv |
Teleinformática Tensor (Cálculo) Deflação |
topic |
Teleinformática Tensor (Cálculo) Deflação |
description |
Low rank tensor decomposition has been playing for the last years an important role in many applications such as blind source separation, telecommunications, sensor array processing, neuroscience, chemometrics, and data mining. The Canonical Polyadic tensor decomposition is very attractive when compared to standard matrix-based tools, manly on system identification. In this thesis, we propose: (i) several algorithms to compute specific low rank-approximations: finite/iterative rank-1 approximations, iterative deflation approximations, and orthogonal tensor decompositions. (ii) A new strategy to solve multivariate quadratic systems, where this problem is reduced to a best rank-1 tensor approximation problem. (iii) Theoretical results to study and proof the performance or the convergence of some algorithms. All performances are supported by numerical experiments |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-09-01T18:42:06Z 2016-09-01T18:42:06Z 2016 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
SILVA, A. P. Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC). 2016. 124 f. Tese (Doutorado em Engenharia de Teleinformática)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2016. http://www.repositorio.ufc.br/handle/riufc/19361 |
identifier_str_mv |
SILVA, A. P. Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC). 2016. 124 f. Tese (Doutorado em Engenharia de Teleinformática)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2016. |
url |
http://www.repositorio.ufc.br/handle/riufc/19361 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813028727670439936 |