Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC)

Detalhes bibliográficos
Autor(a) principal: Silva, Alex Pereira da
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/19361
Resumo: Low rank tensor decomposition has been playing for the last years an important role in many applications such as blind source separation, telecommunications, sensor array processing, neuroscience, chemometrics, and data mining. The Canonical Polyadic tensor decomposition is very attractive when compared to standard matrix-based tools, manly on system identification. In this thesis, we propose: (i) several algorithms to compute specific low rank-approximations: finite/iterative rank-1 approximations, iterative deflation approximations, and orthogonal tensor decompositions. (ii) A new strategy to solve multivariate quadratic systems, where this problem is reduced to a best rank-1 tensor approximation problem. (iii) Theoretical results to study and proof the performance or the convergence of some algorithms. All performances are supported by numerical experiments
id UFC-7_1752f6d24195000d88bd66b5ea77b3bc
oai_identifier_str oai:repositorio.ufc.br:riufc/19361
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC)TeleinformáticaTensor (Cálculo)DeflaçãoLow rank tensor decomposition has been playing for the last years an important role in many applications such as blind source separation, telecommunications, sensor array processing, neuroscience, chemometrics, and data mining. The Canonical Polyadic tensor decomposition is very attractive when compared to standard matrix-based tools, manly on system identification. In this thesis, we propose: (i) several algorithms to compute specific low rank-approximations: finite/iterative rank-1 approximations, iterative deflation approximations, and orthogonal tensor decompositions. (ii) A new strategy to solve multivariate quadratic systems, where this problem is reduced to a best rank-1 tensor approximation problem. (iii) Theoretical results to study and proof the performance or the convergence of some algorithms. All performances are supported by numerical experimentsAlmeida, André Lima Férrer deMota, João César MouraSilva, Alex Pereira da2016-09-01T18:42:06Z2016-09-01T18:42:06Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfSILVA, A. P. Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC). 2016. 124 f. Tese (Doutorado em Engenharia de Teleinformática)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2016.http://www.repositorio.ufc.br/handle/riufc/19361engreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2020-08-24T14:52:53Zoai:repositorio.ufc.br:riufc/19361Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:15:44.795723Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC)
title Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC)
spellingShingle Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC)
Silva, Alex Pereira da
Teleinformática
Tensor (Cálculo)
Deflação
title_short Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC)
title_full Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC)
title_fullStr Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC)
title_full_unstemmed Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC)
title_sort Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC)
author Silva, Alex Pereira da
author_facet Silva, Alex Pereira da
author_role author
dc.contributor.none.fl_str_mv Almeida, André Lima Férrer de
Mota, João César Moura
dc.contributor.author.fl_str_mv Silva, Alex Pereira da
dc.subject.por.fl_str_mv Teleinformática
Tensor (Cálculo)
Deflação
topic Teleinformática
Tensor (Cálculo)
Deflação
description Low rank tensor decomposition has been playing for the last years an important role in many applications such as blind source separation, telecommunications, sensor array processing, neuroscience, chemometrics, and data mining. The Canonical Polyadic tensor decomposition is very attractive when compared to standard matrix-based tools, manly on system identification. In this thesis, we propose: (i) several algorithms to compute specific low rank-approximations: finite/iterative rank-1 approximations, iterative deflation approximations, and orthogonal tensor decompositions. (ii) A new strategy to solve multivariate quadratic systems, where this problem is reduced to a best rank-1 tensor approximation problem. (iii) Theoretical results to study and proof the performance or the convergence of some algorithms. All performances are supported by numerical experiments
publishDate 2016
dc.date.none.fl_str_mv 2016-09-01T18:42:06Z
2016-09-01T18:42:06Z
2016
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv SILVA, A. P. Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC). 2016. 124 f. Tese (Doutorado em Engenharia de Teleinformática)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2016.
http://www.repositorio.ufc.br/handle/riufc/19361
identifier_str_mv SILVA, A. P. Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC). 2016. 124 f. Tese (Doutorado em Engenharia de Teleinformática)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2016.
url http://www.repositorio.ufc.br/handle/riufc/19361
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1813028727670439936