Predição de retrolavagem de filtros em função da qualidade da água de irrigação

Detalhes bibliográficos
Autor(a) principal: Passos, Mádilo Lages Vieira
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/66523
Resumo: Divided into two chapters, this research addresses technical aspects of using inferior quality water in irrigation systems. In the first chapter, the objective was the construction of a multiparametric probe with accessible hardware and software, protocols and basic assumptions of IoT (Internet of Things) and performance according to fuzzy logic concepts. The probe was based on the Arduino Nano model platform. The sensors used were: pH sensor (hydrogen potential), turbidity and total dissolved solids sensor. For data transmission, classic Bluetooth (HC-06 module) and 802.11 g/b/n standard, ESP8266 module (ESP-01) were implemented. The Wi-Fi standard (IEEE 802.11 g/b/n), via ESP8266 version 01, presented the best results for consistency and efficiency of information transmission, according to the fuzzy modeling. In the second chapter, it was technically investigated the influence of water quality on the need for cleaning in filtering systems with backwash. For this purpose, backwash pressure modeling was expressed as a function of water quality and pressure load at the entrance of screen filters, via artificial neural networks. Water quality variables were measured using a multiparameter probe. Feedforward multilayer perceptron artificial neural networks with 2-4-1 architecture, expressed good precision in modeling the temporal evolution of pressure load in the screen filtering system (120 mesh). The pressure load model based on the water quality characteristics pH, turbidity, total dissolved solids and temperature, expressed poor performance.
id UFC-7_2531c3b354d22045768d217b8df91fe3
oai_identifier_str oai:repositorio.ufc.br:riufc/66523
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Predição de retrolavagem de filtros em função da qualidade da água de irrigaçãoFilter backwashing prediction as a function of irrigation water qualityAgricultura irrigadaInteligência ComputacionalFiltragemIrrigated agricultureComputational IntelligenceFilteringDivided into two chapters, this research addresses technical aspects of using inferior quality water in irrigation systems. In the first chapter, the objective was the construction of a multiparametric probe with accessible hardware and software, protocols and basic assumptions of IoT (Internet of Things) and performance according to fuzzy logic concepts. The probe was based on the Arduino Nano model platform. The sensors used were: pH sensor (hydrogen potential), turbidity and total dissolved solids sensor. For data transmission, classic Bluetooth (HC-06 module) and 802.11 g/b/n standard, ESP8266 module (ESP-01) were implemented. The Wi-Fi standard (IEEE 802.11 g/b/n), via ESP8266 version 01, presented the best results for consistency and efficiency of information transmission, according to the fuzzy modeling. In the second chapter, it was technically investigated the influence of water quality on the need for cleaning in filtering systems with backwash. For this purpose, backwash pressure modeling was expressed as a function of water quality and pressure load at the entrance of screen filters, via artificial neural networks. Water quality variables were measured using a multiparameter probe. Feedforward multilayer perceptron artificial neural networks with 2-4-1 architecture, expressed good precision in modeling the temporal evolution of pressure load in the screen filtering system (120 mesh). The pressure load model based on the water quality characteristics pH, turbidity, total dissolved solids and temperature, expressed poor performance.Dividida em dois capítulos, esta pesquisa aborda aspectos técnicos do emprego de águas de qualidade inferior em sistemas de irrigação. No primeiro capítulo, objetivou-se a construção de uma sonda mutiparamétrica com hardware e software acessíveis, protocolos e pressuposições básicas da IoT (do inglês, Internet of Things) e desempenho segundo conceitos de lógica fuzzy. A sonda foi baseada na plataforma Arduino modelo Nano. Os sensores utilizados foram: sensor de pH (potencial hidrogeniônico), turbidez e o sensor de sólidos totais dissolvidos. Para transmissão de dados implementou-se o Bluetooth clássico (módulo HC-06) e o padrão 802.11 g/b/n, módulo ESP8266 (ESP-01). O padrão Wi-Fi (IEEE 802.11 g/b/n), via ESP8266 versão 01, apresentou os melhores resultados de consistência e eficiência de transmissão de informações, segundo a modelagem fuzzy. No segundo capítulo, averiguou-se tecnicamente a influência da qualidade da água na necessidade de limpeza em sistemas de filtragem com retrolavagem. Para tanto, a modelagem da pressão de retrolavagem foi realizada em função da qualidade da água e da carga de pressão na entrada de filtros de tela, via redes neurais artificias. As variáveis de qualidade de água foram mensuradas pela sonda multiparamétrica. As redes neurais artificiais do tipo multilayer perceptron feedfoward com arquitetura 2-4-1, exprimiram boa precisão na modelagem da evolução temporal da carga de pressão no sistema de filtragem de tela (120 mesh). O modelo para carga de pressão, a partir das características de qualidade da água pH, turbidez, sólidos totais dissolvidos e temperatura, expressou baixo desempenho.Sousa, Alan Bernard Oliveira dePassos, Mádilo Lages Vieira2022-06-20T15:54:35Z2022-06-20T15:54:35Z2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfPASSOS, Mádilo Lages Vieira. Predição de retrolavagem de filtros em função da qualidade da água de irrigação. 2022. 88 f. Dissertação (Mestrado em Engenharia Agrícola) – Universidade Federal do Ceará, Fortaleza, 2022.http://www.repositorio.ufc.br/handle/riufc/66523porreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2022-06-20T15:54:35Zoai:repositorio.ufc.br:riufc/66523Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:35:56.659221Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv Predição de retrolavagem de filtros em função da qualidade da água de irrigação
Filter backwashing prediction as a function of irrigation water quality
title Predição de retrolavagem de filtros em função da qualidade da água de irrigação
spellingShingle Predição de retrolavagem de filtros em função da qualidade da água de irrigação
Passos, Mádilo Lages Vieira
Agricultura irrigada
Inteligência Computacional
Filtragem
Irrigated agriculture
Computational Intelligence
Filtering
title_short Predição de retrolavagem de filtros em função da qualidade da água de irrigação
title_full Predição de retrolavagem de filtros em função da qualidade da água de irrigação
title_fullStr Predição de retrolavagem de filtros em função da qualidade da água de irrigação
title_full_unstemmed Predição de retrolavagem de filtros em função da qualidade da água de irrigação
title_sort Predição de retrolavagem de filtros em função da qualidade da água de irrigação
author Passos, Mádilo Lages Vieira
author_facet Passos, Mádilo Lages Vieira
author_role author
dc.contributor.none.fl_str_mv Sousa, Alan Bernard Oliveira de
dc.contributor.author.fl_str_mv Passos, Mádilo Lages Vieira
dc.subject.por.fl_str_mv Agricultura irrigada
Inteligência Computacional
Filtragem
Irrigated agriculture
Computational Intelligence
Filtering
topic Agricultura irrigada
Inteligência Computacional
Filtragem
Irrigated agriculture
Computational Intelligence
Filtering
description Divided into two chapters, this research addresses technical aspects of using inferior quality water in irrigation systems. In the first chapter, the objective was the construction of a multiparametric probe with accessible hardware and software, protocols and basic assumptions of IoT (Internet of Things) and performance according to fuzzy logic concepts. The probe was based on the Arduino Nano model platform. The sensors used were: pH sensor (hydrogen potential), turbidity and total dissolved solids sensor. For data transmission, classic Bluetooth (HC-06 module) and 802.11 g/b/n standard, ESP8266 module (ESP-01) were implemented. The Wi-Fi standard (IEEE 802.11 g/b/n), via ESP8266 version 01, presented the best results for consistency and efficiency of information transmission, according to the fuzzy modeling. In the second chapter, it was technically investigated the influence of water quality on the need for cleaning in filtering systems with backwash. For this purpose, backwash pressure modeling was expressed as a function of water quality and pressure load at the entrance of screen filters, via artificial neural networks. Water quality variables were measured using a multiparameter probe. Feedforward multilayer perceptron artificial neural networks with 2-4-1 architecture, expressed good precision in modeling the temporal evolution of pressure load in the screen filtering system (120 mesh). The pressure load model based on the water quality characteristics pH, turbidity, total dissolved solids and temperature, expressed poor performance.
publishDate 2022
dc.date.none.fl_str_mv 2022-06-20T15:54:35Z
2022-06-20T15:54:35Z
2022
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv PASSOS, Mádilo Lages Vieira. Predição de retrolavagem de filtros em função da qualidade da água de irrigação. 2022. 88 f. Dissertação (Mestrado em Engenharia Agrícola) – Universidade Federal do Ceará, Fortaleza, 2022.
http://www.repositorio.ufc.br/handle/riufc/66523
identifier_str_mv PASSOS, Mádilo Lages Vieira. Predição de retrolavagem de filtros em função da qualidade da água de irrigação. 2022. 88 f. Dissertação (Mestrado em Engenharia Agrícola) – Universidade Federal do Ceará, Fortaleza, 2022.
url http://www.repositorio.ufc.br/handle/riufc/66523
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1813028870835666944