Optimal transport exponent in spatially embedded networks

Detalhes bibliográficos
Autor(a) principal: Reis, Saulo Davi Soares e
Data de Publicação: 2013
Outros Autores: Moreira, André Auto, Havlin, Shlomo, Stanley, Harry Eugene, Andrade Júnior, José Soares de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/44373
Resumo: The imposition of a cost constraint for constructing the optimal navigation structure surely represents a crucial ingredient in the design and development of any realistic navigation network. Previous works have focused on optimal transport in small-world networks built from two-dimensional lattices by adding long-range connections with Manhattan length rij taken from the distribution Pij ∼ r −α ij , where α is a variable exponent. It has been shown that, by introducing a cost constraint on the total length of the additional links, regardless of the strategy used by the traveler (independent of whether it is based on local or global knowledge of the network structure), the best transportation condition is obtained with an exponent α = d + 1, where d is the dimension of the underlying lattice. Here we present further support, through a high-performance real-time algorithm, on the validity of this conjecture in three-dimensional regular as well as in two-dimensional critical percolation clusters. Our results clearly indicate that cost constraint in the navigation problem provides a proper theoretical framework to justify the evolving topologies of real complex network structures, as recently demonstrated for the networks of the US airports and the human brain activity.
id UFC-7_33e6192b6c392b333e1b45641c6ccf0f
oai_identifier_str oai:repositorio.ufc.br:riufc/44373
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Optimal transport exponent in spatially embedded networksRedes complexasGrafo aleatórioModelo de KleinbergThe imposition of a cost constraint for constructing the optimal navigation structure surely represents a crucial ingredient in the design and development of any realistic navigation network. Previous works have focused on optimal transport in small-world networks built from two-dimensional lattices by adding long-range connections with Manhattan length rij taken from the distribution Pij ∼ r −α ij , where α is a variable exponent. It has been shown that, by introducing a cost constraint on the total length of the additional links, regardless of the strategy used by the traveler (independent of whether it is based on local or global knowledge of the network structure), the best transportation condition is obtained with an exponent α = d + 1, where d is the dimension of the underlying lattice. Here we present further support, through a high-performance real-time algorithm, on the validity of this conjecture in three-dimensional regular as well as in two-dimensional critical percolation clusters. Our results clearly indicate that cost constraint in the navigation problem provides a proper theoretical framework to justify the evolving topologies of real complex network structures, as recently demonstrated for the networks of the US airports and the human brain activity.Physical Review E2019-08-01T13:43:00Z2019-08-01T13:43:00Z2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfREIS, S. D. S.; MOREIRA, A. A.; HAVLIN, S.; STANLEY, H. E.; ANDRADE JÚNIOR, J. S. Optimal transport exponent in spatially embedded networks. Physical Review E, v. 87, n. 4, p. 1-8, 2013.15393755 (impresso)15502376 (online)http://www.repositorio.ufc.br/handle/riufc/44373Reis, Saulo Davi Soares eMoreira, André AutoHavlin, ShlomoStanley, Harry EugeneAndrade Júnior, José Soares deinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFC2023-10-10T17:03:08Zoai:repositorio.ufc.br:riufc/44373Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:45:01.928619Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv Optimal transport exponent in spatially embedded networks
title Optimal transport exponent in spatially embedded networks
spellingShingle Optimal transport exponent in spatially embedded networks
Reis, Saulo Davi Soares e
Redes complexas
Grafo aleatório
Modelo de Kleinberg
title_short Optimal transport exponent in spatially embedded networks
title_full Optimal transport exponent in spatially embedded networks
title_fullStr Optimal transport exponent in spatially embedded networks
title_full_unstemmed Optimal transport exponent in spatially embedded networks
title_sort Optimal transport exponent in spatially embedded networks
author Reis, Saulo Davi Soares e
author_facet Reis, Saulo Davi Soares e
Moreira, André Auto
Havlin, Shlomo
Stanley, Harry Eugene
Andrade Júnior, José Soares de
author_role author
author2 Moreira, André Auto
Havlin, Shlomo
Stanley, Harry Eugene
Andrade Júnior, José Soares de
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Reis, Saulo Davi Soares e
Moreira, André Auto
Havlin, Shlomo
Stanley, Harry Eugene
Andrade Júnior, José Soares de
dc.subject.por.fl_str_mv Redes complexas
Grafo aleatório
Modelo de Kleinberg
topic Redes complexas
Grafo aleatório
Modelo de Kleinberg
description The imposition of a cost constraint for constructing the optimal navigation structure surely represents a crucial ingredient in the design and development of any realistic navigation network. Previous works have focused on optimal transport in small-world networks built from two-dimensional lattices by adding long-range connections with Manhattan length rij taken from the distribution Pij ∼ r −α ij , where α is a variable exponent. It has been shown that, by introducing a cost constraint on the total length of the additional links, regardless of the strategy used by the traveler (independent of whether it is based on local or global knowledge of the network structure), the best transportation condition is obtained with an exponent α = d + 1, where d is the dimension of the underlying lattice. Here we present further support, through a high-performance real-time algorithm, on the validity of this conjecture in three-dimensional regular as well as in two-dimensional critical percolation clusters. Our results clearly indicate that cost constraint in the navigation problem provides a proper theoretical framework to justify the evolving topologies of real complex network structures, as recently demonstrated for the networks of the US airports and the human brain activity.
publishDate 2013
dc.date.none.fl_str_mv 2013
2019-08-01T13:43:00Z
2019-08-01T13:43:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv REIS, S. D. S.; MOREIRA, A. A.; HAVLIN, S.; STANLEY, H. E.; ANDRADE JÚNIOR, J. S. Optimal transport exponent in spatially embedded networks. Physical Review E, v. 87, n. 4, p. 1-8, 2013.
15393755 (impresso)
15502376 (online)
http://www.repositorio.ufc.br/handle/riufc/44373
identifier_str_mv REIS, S. D. S.; MOREIRA, A. A.; HAVLIN, S.; STANLEY, H. E.; ANDRADE JÚNIOR, J. S. Optimal transport exponent in spatially embedded networks. Physical Review E, v. 87, n. 4, p. 1-8, 2013.
15393755 (impresso)
15502376 (online)
url http://www.repositorio.ufc.br/handle/riufc/44373
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Physical Review E
publisher.none.fl_str_mv Physical Review E
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1813028931041755136