Optimal transport exponent in spatially embedded networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/44373 |
Resumo: | The imposition of a cost constraint for constructing the optimal navigation structure surely represents a crucial ingredient in the design and development of any realistic navigation network. Previous works have focused on optimal transport in small-world networks built from two-dimensional lattices by adding long-range connections with Manhattan length rij taken from the distribution Pij ∼ r −α ij , where α is a variable exponent. It has been shown that, by introducing a cost constraint on the total length of the additional links, regardless of the strategy used by the traveler (independent of whether it is based on local or global knowledge of the network structure), the best transportation condition is obtained with an exponent α = d + 1, where d is the dimension of the underlying lattice. Here we present further support, through a high-performance real-time algorithm, on the validity of this conjecture in three-dimensional regular as well as in two-dimensional critical percolation clusters. Our results clearly indicate that cost constraint in the navigation problem provides a proper theoretical framework to justify the evolving topologies of real complex network structures, as recently demonstrated for the networks of the US airports and the human brain activity. |
id |
UFC-7_33e6192b6c392b333e1b45641c6ccf0f |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/44373 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
Optimal transport exponent in spatially embedded networksRedes complexasGrafo aleatórioModelo de KleinbergThe imposition of a cost constraint for constructing the optimal navigation structure surely represents a crucial ingredient in the design and development of any realistic navigation network. Previous works have focused on optimal transport in small-world networks built from two-dimensional lattices by adding long-range connections with Manhattan length rij taken from the distribution Pij ∼ r −α ij , where α is a variable exponent. It has been shown that, by introducing a cost constraint on the total length of the additional links, regardless of the strategy used by the traveler (independent of whether it is based on local or global knowledge of the network structure), the best transportation condition is obtained with an exponent α = d + 1, where d is the dimension of the underlying lattice. Here we present further support, through a high-performance real-time algorithm, on the validity of this conjecture in three-dimensional regular as well as in two-dimensional critical percolation clusters. Our results clearly indicate that cost constraint in the navigation problem provides a proper theoretical framework to justify the evolving topologies of real complex network structures, as recently demonstrated for the networks of the US airports and the human brain activity.Physical Review E2019-08-01T13:43:00Z2019-08-01T13:43:00Z2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfREIS, S. D. S.; MOREIRA, A. A.; HAVLIN, S.; STANLEY, H. E.; ANDRADE JÚNIOR, J. S. Optimal transport exponent in spatially embedded networks. Physical Review E, v. 87, n. 4, p. 1-8, 2013.15393755 (impresso)15502376 (online)http://www.repositorio.ufc.br/handle/riufc/44373Reis, Saulo Davi Soares eMoreira, André AutoHavlin, ShlomoStanley, Harry EugeneAndrade Júnior, José Soares deinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFC2023-10-10T17:03:08Zoai:repositorio.ufc.br:riufc/44373Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:45:01.928619Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Optimal transport exponent in spatially embedded networks |
title |
Optimal transport exponent in spatially embedded networks |
spellingShingle |
Optimal transport exponent in spatially embedded networks Reis, Saulo Davi Soares e Redes complexas Grafo aleatório Modelo de Kleinberg |
title_short |
Optimal transport exponent in spatially embedded networks |
title_full |
Optimal transport exponent in spatially embedded networks |
title_fullStr |
Optimal transport exponent in spatially embedded networks |
title_full_unstemmed |
Optimal transport exponent in spatially embedded networks |
title_sort |
Optimal transport exponent in spatially embedded networks |
author |
Reis, Saulo Davi Soares e |
author_facet |
Reis, Saulo Davi Soares e Moreira, André Auto Havlin, Shlomo Stanley, Harry Eugene Andrade Júnior, José Soares de |
author_role |
author |
author2 |
Moreira, André Auto Havlin, Shlomo Stanley, Harry Eugene Andrade Júnior, José Soares de |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Reis, Saulo Davi Soares e Moreira, André Auto Havlin, Shlomo Stanley, Harry Eugene Andrade Júnior, José Soares de |
dc.subject.por.fl_str_mv |
Redes complexas Grafo aleatório Modelo de Kleinberg |
topic |
Redes complexas Grafo aleatório Modelo de Kleinberg |
description |
The imposition of a cost constraint for constructing the optimal navigation structure surely represents a crucial ingredient in the design and development of any realistic navigation network. Previous works have focused on optimal transport in small-world networks built from two-dimensional lattices by adding long-range connections with Manhattan length rij taken from the distribution Pij ∼ r −α ij , where α is a variable exponent. It has been shown that, by introducing a cost constraint on the total length of the additional links, regardless of the strategy used by the traveler (independent of whether it is based on local or global knowledge of the network structure), the best transportation condition is obtained with an exponent α = d + 1, where d is the dimension of the underlying lattice. Here we present further support, through a high-performance real-time algorithm, on the validity of this conjecture in three-dimensional regular as well as in two-dimensional critical percolation clusters. Our results clearly indicate that cost constraint in the navigation problem provides a proper theoretical framework to justify the evolving topologies of real complex network structures, as recently demonstrated for the networks of the US airports and the human brain activity. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 2019-08-01T13:43:00Z 2019-08-01T13:43:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
REIS, S. D. S.; MOREIRA, A. A.; HAVLIN, S.; STANLEY, H. E.; ANDRADE JÚNIOR, J. S. Optimal transport exponent in spatially embedded networks. Physical Review E, v. 87, n. 4, p. 1-8, 2013. 15393755 (impresso) 15502376 (online) http://www.repositorio.ufc.br/handle/riufc/44373 |
identifier_str_mv |
REIS, S. D. S.; MOREIRA, A. A.; HAVLIN, S.; STANLEY, H. E.; ANDRADE JÚNIOR, J. S. Optimal transport exponent in spatially embedded networks. Physical Review E, v. 87, n. 4, p. 1-8, 2013. 15393755 (impresso) 15502376 (online) |
url |
http://www.repositorio.ufc.br/handle/riufc/44373 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Physical Review E |
publisher.none.fl_str_mv |
Physical Review E |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813028931041755136 |