The role of excitatory and inhibitory learning in EXIN networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 1998 |
Outros Autores: | |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/70706 |
Resumo: | In this paper we propose modifications for the learning rules of Marshall’s EXIN (excitatory + inhibitory) neural network model in order to decrease its computational complexity and understand the role of the weight updating learning rules in correctly encoding familiar, superimposed and ambiguous input patterns. The MEXIN (Modified EXIN) models introduce mixtures of competitive and Hebbian updating rules. In this case, only the weights of the unit with highest activation are updated. Hence, the MEXIN networks require less computation than the original EXIN model. A number of simulations are carried out with the aim of showing how the models respond to overlapping, superimposed and ambiguous patterns. |
id |
UFC-7_3d4cb3e33d50f5cb441c212f8b57cccf |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/70706 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
The role of excitatory and inhibitory learning in EXIN networksEXIN networksAnti-hebbian learningCompetitive learningUncertaintyDistributed codingIn this paper we propose modifications for the learning rules of Marshall’s EXIN (excitatory + inhibitory) neural network model in order to decrease its computational complexity and understand the role of the weight updating learning rules in correctly encoding familiar, superimposed and ambiguous input patterns. The MEXIN (Modified EXIN) models introduce mixtures of competitive and Hebbian updating rules. In this case, only the weights of the unit with highest activation are updated. Hence, the MEXIN networks require less computation than the original EXIN model. A number of simulations are carried out with the aim of showing how the models respond to overlapping, superimposed and ambiguous patterns.World Congress on Computational Intelligence2023-02-09T16:49:20Z2023-02-09T16:49:20Z1998info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectapplication/pdfBARRETO, G. A.; ARAÚJO, A. F. R. The role of excitatory and inhibitory learning in EXIN networks. In: WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, 1998, Anchorage. Anais... Anchorage: IEEE, 1998. p. 2378-2383.http://www.repositorio.ufc.br/handle/riufc/70706Barreto, Guilherme de AlencarAraújo, Aluízio Fausto Ribeiroengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2023-02-09T16:49:20Zoai:repositorio.ufc.br:riufc/70706Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:53:52.851581Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
The role of excitatory and inhibitory learning in EXIN networks |
title |
The role of excitatory and inhibitory learning in EXIN networks |
spellingShingle |
The role of excitatory and inhibitory learning in EXIN networks Barreto, Guilherme de Alencar EXIN networks Anti-hebbian learning Competitive learning Uncertainty Distributed coding |
title_short |
The role of excitatory and inhibitory learning in EXIN networks |
title_full |
The role of excitatory and inhibitory learning in EXIN networks |
title_fullStr |
The role of excitatory and inhibitory learning in EXIN networks |
title_full_unstemmed |
The role of excitatory and inhibitory learning in EXIN networks |
title_sort |
The role of excitatory and inhibitory learning in EXIN networks |
author |
Barreto, Guilherme de Alencar |
author_facet |
Barreto, Guilherme de Alencar Araújo, Aluízio Fausto Ribeiro |
author_role |
author |
author2 |
Araújo, Aluízio Fausto Ribeiro |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Barreto, Guilherme de Alencar Araújo, Aluízio Fausto Ribeiro |
dc.subject.por.fl_str_mv |
EXIN networks Anti-hebbian learning Competitive learning Uncertainty Distributed coding |
topic |
EXIN networks Anti-hebbian learning Competitive learning Uncertainty Distributed coding |
description |
In this paper we propose modifications for the learning rules of Marshall’s EXIN (excitatory + inhibitory) neural network model in order to decrease its computational complexity and understand the role of the weight updating learning rules in correctly encoding familiar, superimposed and ambiguous input patterns. The MEXIN (Modified EXIN) models introduce mixtures of competitive and Hebbian updating rules. In this case, only the weights of the unit with highest activation are updated. Hence, the MEXIN networks require less computation than the original EXIN model. A number of simulations are carried out with the aim of showing how the models respond to overlapping, superimposed and ambiguous patterns. |
publishDate |
1998 |
dc.date.none.fl_str_mv |
1998 2023-02-09T16:49:20Z 2023-02-09T16:49:20Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
BARRETO, G. A.; ARAÚJO, A. F. R. The role of excitatory and inhibitory learning in EXIN networks. In: WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, 1998, Anchorage. Anais... Anchorage: IEEE, 1998. p. 2378-2383. http://www.repositorio.ufc.br/handle/riufc/70706 |
identifier_str_mv |
BARRETO, G. A.; ARAÚJO, A. F. R. The role of excitatory and inhibitory learning in EXIN networks. In: WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, 1998, Anchorage. Anais... Anchorage: IEEE, 1998. p. 2378-2383. |
url |
http://www.repositorio.ufc.br/handle/riufc/70706 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
World Congress on Computational Intelligence |
publisher.none.fl_str_mv |
World Congress on Computational Intelligence |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813028988609626112 |