Approximate linear dependence as a design method for Kernel prototype-based classifiers
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/70707 |
Resumo: | The approximate linear dependence (ALD) method is a sparsification procedure used to build a dictionary of samples extracted from a data set. The extracted samples are approximately linearly independent in a high-dimensional kernel reproducing Hilbert space. In this paper, we argue that the ALD method itself can be used to select relevant prototypes from a training data set and use them to classify new samples using kernelized distances. The results obtained from intensive experimentation with several datasets indicate that the proposed approach is viable to be used as a standalone classifier. |
id |
UFC-7_4483a6e9afac971e6e08970e12fc584e |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/70707 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
Approximate linear dependence as a design method for Kernel prototype-based classifiersPrototype-based classifiersSparsificationApproximate linear dependenceKernel classifiersKernel SOMThe approximate linear dependence (ALD) method is a sparsification procedure used to build a dictionary of samples extracted from a data set. The extracted samples are approximately linearly independent in a high-dimensional kernel reproducing Hilbert space. In this paper, we argue that the ALD method itself can be used to select relevant prototypes from a training data set and use them to classify new samples using kernelized distances. The results obtained from intensive experimentation with several datasets indicate that the proposed approach is viable to be used as a standalone classifier.International Workshop on Self-Organizing Maps2023-02-09T16:49:52Z2023-02-09T16:49:52Z2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectapplication/pdfCOELHO, D. N.; BARRETO, G. A. Approximate linear dependence as a design method for Kernel prototype-based classifiers. In: INTERNATIONAL WORKSHOP ON SELF-ORGANIZING MAPS, 13., 2019, Barcelona. Anais... Barcelona, 2013. p. 241-250.http://www.repositorio.ufc.br/handle/riufc/70707Coelho, David NascimentoBarreto, Guilherme de Alencarengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2023-02-09T16:49:52Zoai:repositorio.ufc.br:riufc/70707Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:49:50.554642Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Approximate linear dependence as a design method for Kernel prototype-based classifiers |
title |
Approximate linear dependence as a design method for Kernel prototype-based classifiers |
spellingShingle |
Approximate linear dependence as a design method for Kernel prototype-based classifiers Coelho, David Nascimento Prototype-based classifiers Sparsification Approximate linear dependence Kernel classifiers Kernel SOM |
title_short |
Approximate linear dependence as a design method for Kernel prototype-based classifiers |
title_full |
Approximate linear dependence as a design method for Kernel prototype-based classifiers |
title_fullStr |
Approximate linear dependence as a design method for Kernel prototype-based classifiers |
title_full_unstemmed |
Approximate linear dependence as a design method for Kernel prototype-based classifiers |
title_sort |
Approximate linear dependence as a design method for Kernel prototype-based classifiers |
author |
Coelho, David Nascimento |
author_facet |
Coelho, David Nascimento Barreto, Guilherme de Alencar |
author_role |
author |
author2 |
Barreto, Guilherme de Alencar |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Coelho, David Nascimento Barreto, Guilherme de Alencar |
dc.subject.por.fl_str_mv |
Prototype-based classifiers Sparsification Approximate linear dependence Kernel classifiers Kernel SOM |
topic |
Prototype-based classifiers Sparsification Approximate linear dependence Kernel classifiers Kernel SOM |
description |
The approximate linear dependence (ALD) method is a sparsification procedure used to build a dictionary of samples extracted from a data set. The extracted samples are approximately linearly independent in a high-dimensional kernel reproducing Hilbert space. In this paper, we argue that the ALD method itself can be used to select relevant prototypes from a training data set and use them to classify new samples using kernelized distances. The results obtained from intensive experimentation with several datasets indicate that the proposed approach is viable to be used as a standalone classifier. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 2023-02-09T16:49:52Z 2023-02-09T16:49:52Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
COELHO, D. N.; BARRETO, G. A. Approximate linear dependence as a design method for Kernel prototype-based classifiers. In: INTERNATIONAL WORKSHOP ON SELF-ORGANIZING MAPS, 13., 2019, Barcelona. Anais... Barcelona, 2013. p. 241-250. http://www.repositorio.ufc.br/handle/riufc/70707 |
identifier_str_mv |
COELHO, D. N.; BARRETO, G. A. Approximate linear dependence as a design method for Kernel prototype-based classifiers. In: INTERNATIONAL WORKSHOP ON SELF-ORGANIZING MAPS, 13., 2019, Barcelona. Anais... Barcelona, 2013. p. 241-250. |
url |
http://www.repositorio.ufc.br/handle/riufc/70707 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
International Workshop on Self-Organizing Maps |
publisher.none.fl_str_mv |
International Workshop on Self-Organizing Maps |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813028962950971392 |