Workload modeling and prediction for resources provisioning in cloud

Detalhes bibliográficos
Autor(a) principal: Magalhães, Deborah Maria Vieira
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/22987
Resumo: The evaluation of resource management policies in cloud environments is challenging since clouds are subject to varying demand coming from users with different profiles and Quality de Service (QoS) requirements. Factors as the virtualization layer overhead, insufficient trace logs available for analysis, and mixed workloads composed of a wide variety of applications in a heterogeneous environment frustrate the modeling and characterization of applications hosted in the cloud. In this context, workload modeling and characterization is a fundamental step on systematizing the analysis and simulation of the performance of computational resources management policies and a particularly useful strategy for the physical implementation of the clouds. In this doctoral thesis, we propose a methodology for workload modeling and characterization to create resource utilization profiles in Cloud. The workload behavior patterns are identified and modeled in the form of statistical distributions which are used by a predictive controller to establish the complex relationship between resource utilization and response time metric. To this end, the controller makes adjustments in the resource utilization to maintain the response time experienced by the user within an acceptable threshold. Hence, our proposal directly supports QoS-aware resource provisioning policies. The proposed methodology was validated through two different applications with distinct characteristics: a scientific application to pulmonary diseases diagnosis, and a web application that emulates an auction site. The performance models were compared with monitoring data through graphical and analytical methods to evaluate their accuracy, and all the models presented a percentage error of less than 10 %. The predictive controller was able to dynamically maintain the response time close to the expected trajectory without Service Level Agreement (SLA) violation with an Mean Absolute Percentage Error (MAPE) = 4.36%.
id UFC-7_506f3b28165cfde425de6917838cdc2e
oai_identifier_str oai:repositorio.ufc.br:riufc/22987
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Workload modeling and prediction for resources provisioning in cloudTeleinformáticaModelagem computacionalSimulação (Computadores)Computação em nuvemCloud computingSimulationWorkload modelingWorkload profilingThe evaluation of resource management policies in cloud environments is challenging since clouds are subject to varying demand coming from users with different profiles and Quality de Service (QoS) requirements. Factors as the virtualization layer overhead, insufficient trace logs available for analysis, and mixed workloads composed of a wide variety of applications in a heterogeneous environment frustrate the modeling and characterization of applications hosted in the cloud. In this context, workload modeling and characterization is a fundamental step on systematizing the analysis and simulation of the performance of computational resources management policies and a particularly useful strategy for the physical implementation of the clouds. In this doctoral thesis, we propose a methodology for workload modeling and characterization to create resource utilization profiles in Cloud. The workload behavior patterns are identified and modeled in the form of statistical distributions which are used by a predictive controller to establish the complex relationship between resource utilization and response time metric. To this end, the controller makes adjustments in the resource utilization to maintain the response time experienced by the user within an acceptable threshold. Hence, our proposal directly supports QoS-aware resource provisioning policies. The proposed methodology was validated through two different applications with distinct characteristics: a scientific application to pulmonary diseases diagnosis, and a web application that emulates an auction site. The performance models were compared with monitoring data through graphical and analytical methods to evaluate their accuracy, and all the models presented a percentage error of less than 10 %. The predictive controller was able to dynamically maintain the response time close to the expected trajectory without Service Level Agreement (SLA) violation with an Mean Absolute Percentage Error (MAPE) = 4.36%.A avaliação de políticas de gerenciamento de recursos em nuvens computacionais é uma tarefa desafiadora, uma vez que tais ambientes estão sujeitos a demandas variáveis de usuários com diferentes perfis de comportamento e expectativas de Qualidade de Serviço (QoS). Fatores como overhead da camada de virtualização, indisponibilidade de dados e complexidade de cargas de trabalho altamente heterogêneas dificultam a modelagem e caracterização de aplicações hospedadas em nuvens. Neste contexto, caracterizar e modelar a carga de trabalho (ou simples- mente carga) é um passo importante na sistematização da análise e simulação do desempenho de políticas de gerenciamento dos recursos computacionais e uma estratégia particularmente útil antes da implantação física das nuvens. Nesta tese de doutorado, é proposta uma metodologia para modelagem e caracterização de carga visando criar perfis de utilização de recursos em Nuvem. Os padrões de comportamento das cargas são identificados e modelados sob a forma de distribuições estatísticas as quais são utilizadas por um controlador preditivo a fim de estabelecer a complexa relação entre a utilização dos recursos e a métrica de tempo de resposta. Desse modo, o controlador realiza ajustes no percentual de utilização do recursos a fim de manter o tempo de resposta observado pelo o usuário dentro de um limiar aceitável. Assim, nossa proposta apoia diretamente políticas de provisionamento de recursos cientes da Qualidade de Serviço (QoS). A metodologia proposta foi validada através de aplicações com características distintas: uma aplicação científica para o auxílio do diagnóstico de doenças pulmonares e uma aplicação Web que emula um site de leilões. Os modelos de desempenho computacional gerados foram confrontados com os dados reais através de métodos estatísticos gráficos e analíticos a fim de avaliar sua acurácia e todos os modelos apresentaram um percentual de erro inferior a 10%. A modelagem proposta para o controlador preditivo mostrou-se efetiva pois foi capaz de dinamicamente manter o tempo de resposta próximo ao valor esperado, com erro percentual absoluto médio (MAPE ) = 4.36% sem violação de SLA.Gomes, Danielo GonçalvesBuyya, RajkumarMagalhães, Deborah Maria Vieira2017-06-02T16:18:39Z2017-06-02T16:18:39Z2017-02-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfMAGALHÃES, Deborah Maria Vieira. Workload modeling and prediction for resources provisioning in cloud. 2017. 100 f. Tese (Doutorado em Engenharia de Teleinformática)–Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2017.http://www.repositorio.ufc.br/handle/riufc/22987engreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2018-11-27T18:45:21Zoai:repositorio.ufc.br:riufc/22987Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:26:41.176252Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv Workload modeling and prediction for resources provisioning in cloud
title Workload modeling and prediction for resources provisioning in cloud
spellingShingle Workload modeling and prediction for resources provisioning in cloud
Magalhães, Deborah Maria Vieira
Teleinformática
Modelagem computacional
Simulação (Computadores)
Computação em nuvem
Cloud computing
Simulation
Workload modeling
Workload profiling
title_short Workload modeling and prediction for resources provisioning in cloud
title_full Workload modeling and prediction for resources provisioning in cloud
title_fullStr Workload modeling and prediction for resources provisioning in cloud
title_full_unstemmed Workload modeling and prediction for resources provisioning in cloud
title_sort Workload modeling and prediction for resources provisioning in cloud
author Magalhães, Deborah Maria Vieira
author_facet Magalhães, Deborah Maria Vieira
author_role author
dc.contributor.none.fl_str_mv Gomes, Danielo Gonçalves
Buyya, Rajkumar
dc.contributor.author.fl_str_mv Magalhães, Deborah Maria Vieira
dc.subject.por.fl_str_mv Teleinformática
Modelagem computacional
Simulação (Computadores)
Computação em nuvem
Cloud computing
Simulation
Workload modeling
Workload profiling
topic Teleinformática
Modelagem computacional
Simulação (Computadores)
Computação em nuvem
Cloud computing
Simulation
Workload modeling
Workload profiling
description The evaluation of resource management policies in cloud environments is challenging since clouds are subject to varying demand coming from users with different profiles and Quality de Service (QoS) requirements. Factors as the virtualization layer overhead, insufficient trace logs available for analysis, and mixed workloads composed of a wide variety of applications in a heterogeneous environment frustrate the modeling and characterization of applications hosted in the cloud. In this context, workload modeling and characterization is a fundamental step on systematizing the analysis and simulation of the performance of computational resources management policies and a particularly useful strategy for the physical implementation of the clouds. In this doctoral thesis, we propose a methodology for workload modeling and characterization to create resource utilization profiles in Cloud. The workload behavior patterns are identified and modeled in the form of statistical distributions which are used by a predictive controller to establish the complex relationship between resource utilization and response time metric. To this end, the controller makes adjustments in the resource utilization to maintain the response time experienced by the user within an acceptable threshold. Hence, our proposal directly supports QoS-aware resource provisioning policies. The proposed methodology was validated through two different applications with distinct characteristics: a scientific application to pulmonary diseases diagnosis, and a web application that emulates an auction site. The performance models were compared with monitoring data through graphical and analytical methods to evaluate their accuracy, and all the models presented a percentage error of less than 10 %. The predictive controller was able to dynamically maintain the response time close to the expected trajectory without Service Level Agreement (SLA) violation with an Mean Absolute Percentage Error (MAPE) = 4.36%.
publishDate 2017
dc.date.none.fl_str_mv 2017-06-02T16:18:39Z
2017-06-02T16:18:39Z
2017-02-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv MAGALHÃES, Deborah Maria Vieira. Workload modeling and prediction for resources provisioning in cloud. 2017. 100 f. Tese (Doutorado em Engenharia de Teleinformática)–Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2017.
http://www.repositorio.ufc.br/handle/riufc/22987
identifier_str_mv MAGALHÃES, Deborah Maria Vieira. Workload modeling and prediction for resources provisioning in cloud. 2017. 100 f. Tese (Doutorado em Engenharia de Teleinformática)–Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2017.
url http://www.repositorio.ufc.br/handle/riufc/22987
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1813028806146916352