Tensor methods for array processing and channel estimation in wireless communications systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/37929 |
Resumo: | In several applications in the field of digital signal processing, for example, wireless communications, sonar and radar, the received signal has a multidimensional nature which can intrinsically include on its structure many dimensions such as space, time, frequency, code, and polarization. In view of this, modern processing techniques which exploit all the signal dimensions can be developed to improve the system performance due to more accurate parameter estimation (for example: direction of departure, direction of arrival, delay, Doppler frequency, channel coefficients, phase noise) with powerful identifiability conditions. In this context, this thesis proposes new tensor modeling approaches for array processing and channel estimation applied to wireless communications systems. In the first part of this thesis, devoted to multidimensional sensor array and radar processing, we propose a new tensor-based preprocessing technique for noise supression which significantly reduces the noise effect in matrix and tensor data leading to more accurate estimates of the desired parameters. Then, new tensor methods capitalizing on the PARAFAC, Tucker and Nested-PARAFAC decompositions are formulated, from which new algorithms for joint direction of departure and direction of arrival estimation are proposed. In the second part of this document, tensor modeling approaches are developed to solve channel estimation problems in MIMO wireless communications systems. Firstly, we propose a new closed-loop and multi-frequency channel training framework that concentrates the processing associated with joint downlink and uplink channel estimation at the base station. We also show that the received closed-loop signal can be modeled as the PARAFAC decomposition of a third-order tensor. Then, the PARAFAC decomposition is also exploited to modeling a more realistic MIMO communication system that considers phase noise perturbations at each transmit and receive antenna. Receiver algorithms for channel and phase noise estimation are formulated. Simulation results are presented to illustrate the performance of the proposed receivers which are compared to state-of-the-art approaches. |
id |
UFC-7_577b5d03c007a521ea0e168d9860a910 |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/37929 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
Tensor methods for array processing and channel estimation in wireless communications systemsTeleinformáticaSistemas de comunicação sem fioTensor modelingArray processingWireless communications systemsChannel estimationIn several applications in the field of digital signal processing, for example, wireless communications, sonar and radar, the received signal has a multidimensional nature which can intrinsically include on its structure many dimensions such as space, time, frequency, code, and polarization. In view of this, modern processing techniques which exploit all the signal dimensions can be developed to improve the system performance due to more accurate parameter estimation (for example: direction of departure, direction of arrival, delay, Doppler frequency, channel coefficients, phase noise) with powerful identifiability conditions. In this context, this thesis proposes new tensor modeling approaches for array processing and channel estimation applied to wireless communications systems. In the first part of this thesis, devoted to multidimensional sensor array and radar processing, we propose a new tensor-based preprocessing technique for noise supression which significantly reduces the noise effect in matrix and tensor data leading to more accurate estimates of the desired parameters. Then, new tensor methods capitalizing on the PARAFAC, Tucker and Nested-PARAFAC decompositions are formulated, from which new algorithms for joint direction of departure and direction of arrival estimation are proposed. In the second part of this document, tensor modeling approaches are developed to solve channel estimation problems in MIMO wireless communications systems. Firstly, we propose a new closed-loop and multi-frequency channel training framework that concentrates the processing associated with joint downlink and uplink channel estimation at the base station. We also show that the received closed-loop signal can be modeled as the PARAFAC decomposition of a third-order tensor. Then, the PARAFAC decomposition is also exploited to modeling a more realistic MIMO communication system that considers phase noise perturbations at each transmit and receive antenna. Receiver algorithms for channel and phase noise estimation are formulated. Simulation results are presented to illustrate the performance of the proposed receivers which are compared to state-of-the-art approaches.Em diversas aplica¸c˜oes no campo de processamento digital de sinais, como por exemplo, comunica¸c˜oes sem-fio, sonar e radar, o sinal recebido possui natureza multidimensional que pode incluir intrinsecamente em sua estrutura dimens˜oes como espa¸co, tempo, frequˆencia, c´odigo e polariza¸c˜ao. Em virtude disso, t´ecnicas modernas de processamento que exploram as m´ultiplas dimens˜oes do sinal podem ser desenvolvidas para melhorar o desempenho desses sistemas devido `a estimativas de parˆametros mais acuradas (por exemplo: dire¸c˜ao de partida, dire¸c˜ao de chegada, atraso, frequˆencia Doppler, coeficientes de canal, ru´ıdo de fase) apresentando melhores condi¸c˜oes de identificabilidade. Nesse contexto, esta tese prop˜oe novas modelagens tensoriais para processamento de sinais em arranjos e estima¸c˜ao de canal aplicada `a sistemas de comunica¸c˜oes sem-fio. Na primeira parte desta tese, dedicada `a processamento de sinais em arranjos multidimensionais de sensores e radar, propomos uma nova t´ecnica de pr´e-processamento tensorial para supress˜ao de ru´ıdo que reduz significantemente o efeito do ru´ıdo em dados matriciais e tensoriais implicando em melhores estimativas dos parˆametros desejados. Em seguida, novas modelagens tensoriais baseadas nas decomposi¸c˜oes PARAFAC, Tucker e Nested-PARAFAC s˜ao formuladas, a partir das quais novos algoritmos para estima¸c˜ao conjunta de ˆangulo de partida e ˆangulo de chegada s˜ao propostos. Na segunda parte deste documento, modelagens tensoriais s˜ao desenvolvidas para resolver o problema de estima¸c˜ao de canal em sistemas de comunica¸c˜oes MIMO sem-fio. Primeiramente, propomos um esquema de codifica¸c˜ao e retransmiss˜ao multi-frequencial que concentra o processamento associado `a estima¸c˜ao conjunta dos canais de downlink e uplink na esta¸c˜ao-base. Mostramos que o sinal retransmitido recebido pode ser modelado como a decomposi¸c˜ao PARAFAC de um tensor de terceiraordem. Em seguida, a decomposi¸c˜ao PARAFAC ´e novamente explorada na modelagem de um sistema de comunica¸c˜ao MIMO mais realista que considera perturba¸c˜oes de ru´ıdos de fase em cada antena transmissora e receptora. Algoritmos receptores para estima¸c˜ao de canal e ru´ıdo de fase s˜ao formulados. Resultados de simula¸c˜ao s˜ao apresentados para ilustrar o desempenho dos receptores propostos que s˜ao comparados ao estado-da-arte.Almeida, André Lima Férrer deCosta, João Paulo Carvalho Lustosa daGomes, Paulo Ricardo Barboza2018-12-06T12:12:11Z2018-12-06T12:12:11Z2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfGOMES, P. R. B. Tensor methods for array processing and channel estimation in wireless communications systems. 2018. 135 f. Tese (Doutorado em Engenharia de Teleinformática)–Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2018.http://www.repositorio.ufc.br/handle/riufc/37929engreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2020-11-26T20:42:28Zoai:repositorio.ufc.br:riufc/37929Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:48:19.946492Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Tensor methods for array processing and channel estimation in wireless communications systems |
title |
Tensor methods for array processing and channel estimation in wireless communications systems |
spellingShingle |
Tensor methods for array processing and channel estimation in wireless communications systems Gomes, Paulo Ricardo Barboza Teleinformática Sistemas de comunicação sem fio Tensor modeling Array processing Wireless communications systems Channel estimation |
title_short |
Tensor methods for array processing and channel estimation in wireless communications systems |
title_full |
Tensor methods for array processing and channel estimation in wireless communications systems |
title_fullStr |
Tensor methods for array processing and channel estimation in wireless communications systems |
title_full_unstemmed |
Tensor methods for array processing and channel estimation in wireless communications systems |
title_sort |
Tensor methods for array processing and channel estimation in wireless communications systems |
author |
Gomes, Paulo Ricardo Barboza |
author_facet |
Gomes, Paulo Ricardo Barboza |
author_role |
author |
dc.contributor.none.fl_str_mv |
Almeida, André Lima Férrer de Costa, João Paulo Carvalho Lustosa da |
dc.contributor.author.fl_str_mv |
Gomes, Paulo Ricardo Barboza |
dc.subject.por.fl_str_mv |
Teleinformática Sistemas de comunicação sem fio Tensor modeling Array processing Wireless communications systems Channel estimation |
topic |
Teleinformática Sistemas de comunicação sem fio Tensor modeling Array processing Wireless communications systems Channel estimation |
description |
In several applications in the field of digital signal processing, for example, wireless communications, sonar and radar, the received signal has a multidimensional nature which can intrinsically include on its structure many dimensions such as space, time, frequency, code, and polarization. In view of this, modern processing techniques which exploit all the signal dimensions can be developed to improve the system performance due to more accurate parameter estimation (for example: direction of departure, direction of arrival, delay, Doppler frequency, channel coefficients, phase noise) with powerful identifiability conditions. In this context, this thesis proposes new tensor modeling approaches for array processing and channel estimation applied to wireless communications systems. In the first part of this thesis, devoted to multidimensional sensor array and radar processing, we propose a new tensor-based preprocessing technique for noise supression which significantly reduces the noise effect in matrix and tensor data leading to more accurate estimates of the desired parameters. Then, new tensor methods capitalizing on the PARAFAC, Tucker and Nested-PARAFAC decompositions are formulated, from which new algorithms for joint direction of departure and direction of arrival estimation are proposed. In the second part of this document, tensor modeling approaches are developed to solve channel estimation problems in MIMO wireless communications systems. Firstly, we propose a new closed-loop and multi-frequency channel training framework that concentrates the processing associated with joint downlink and uplink channel estimation at the base station. We also show that the received closed-loop signal can be modeled as the PARAFAC decomposition of a third-order tensor. Then, the PARAFAC decomposition is also exploited to modeling a more realistic MIMO communication system that considers phase noise perturbations at each transmit and receive antenna. Receiver algorithms for channel and phase noise estimation are formulated. Simulation results are presented to illustrate the performance of the proposed receivers which are compared to state-of-the-art approaches. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12-06T12:12:11Z 2018-12-06T12:12:11Z 2018 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
GOMES, P. R. B. Tensor methods for array processing and channel estimation in wireless communications systems. 2018. 135 f. Tese (Doutorado em Engenharia de Teleinformática)–Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2018. http://www.repositorio.ufc.br/handle/riufc/37929 |
identifier_str_mv |
GOMES, P. R. B. Tensor methods for array processing and channel estimation in wireless communications systems. 2018. 135 f. Tese (Doutorado em Engenharia de Teleinformática)–Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2018. |
url |
http://www.repositorio.ufc.br/handle/riufc/37929 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813028953502253056 |