Tensor methods for array processing and channel estimation in wireless communications systems

Detalhes bibliográficos
Autor(a) principal: Gomes, Paulo Ricardo Barboza
Data de Publicação: 2018
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/37929
Resumo: In several applications in the field of digital signal processing, for example, wireless communications, sonar and radar, the received signal has a multidimensional nature which can intrinsically include on its structure many dimensions such as space, time, frequency, code, and polarization. In view of this, modern processing techniques which exploit all the signal dimensions can be developed to improve the system performance due to more accurate parameter estimation (for example: direction of departure, direction of arrival, delay, Doppler frequency, channel coefficients, phase noise) with powerful identifiability conditions. In this context, this thesis proposes new tensor modeling approaches for array processing and channel estimation applied to wireless communications systems. In the first part of this thesis, devoted to multidimensional sensor array and radar processing, we propose a new tensor-based preprocessing technique for noise supression which significantly reduces the noise effect in matrix and tensor data leading to more accurate estimates of the desired parameters. Then, new tensor methods capitalizing on the PARAFAC, Tucker and Nested-PARAFAC decompositions are formulated, from which new algorithms for joint direction of departure and direction of arrival estimation are proposed. In the second part of this document, tensor modeling approaches are developed to solve channel estimation problems in MIMO wireless communications systems. Firstly, we propose a new closed-loop and multi-frequency channel training framework that concentrates the processing associated with joint downlink and uplink channel estimation at the base station. We also show that the received closed-loop signal can be modeled as the PARAFAC decomposition of a third-order tensor. Then, the PARAFAC decomposition is also exploited to modeling a more realistic MIMO communication system that considers phase noise perturbations at each transmit and receive antenna. Receiver algorithms for channel and phase noise estimation are formulated. Simulation results are presented to illustrate the performance of the proposed receivers which are compared to state-of-the-art approaches.
id UFC-7_577b5d03c007a521ea0e168d9860a910
oai_identifier_str oai:repositorio.ufc.br:riufc/37929
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Tensor methods for array processing and channel estimation in wireless communications systemsTeleinformáticaSistemas de comunicação sem fioTensor modelingArray processingWireless communications systemsChannel estimationIn several applications in the field of digital signal processing, for example, wireless communications, sonar and radar, the received signal has a multidimensional nature which can intrinsically include on its structure many dimensions such as space, time, frequency, code, and polarization. In view of this, modern processing techniques which exploit all the signal dimensions can be developed to improve the system performance due to more accurate parameter estimation (for example: direction of departure, direction of arrival, delay, Doppler frequency, channel coefficients, phase noise) with powerful identifiability conditions. In this context, this thesis proposes new tensor modeling approaches for array processing and channel estimation applied to wireless communications systems. In the first part of this thesis, devoted to multidimensional sensor array and radar processing, we propose a new tensor-based preprocessing technique for noise supression which significantly reduces the noise effect in matrix and tensor data leading to more accurate estimates of the desired parameters. Then, new tensor methods capitalizing on the PARAFAC, Tucker and Nested-PARAFAC decompositions are formulated, from which new algorithms for joint direction of departure and direction of arrival estimation are proposed. In the second part of this document, tensor modeling approaches are developed to solve channel estimation problems in MIMO wireless communications systems. Firstly, we propose a new closed-loop and multi-frequency channel training framework that concentrates the processing associated with joint downlink and uplink channel estimation at the base station. We also show that the received closed-loop signal can be modeled as the PARAFAC decomposition of a third-order tensor. Then, the PARAFAC decomposition is also exploited to modeling a more realistic MIMO communication system that considers phase noise perturbations at each transmit and receive antenna. Receiver algorithms for channel and phase noise estimation are formulated. Simulation results are presented to illustrate the performance of the proposed receivers which are compared to state-of-the-art approaches.Em diversas aplica¸c˜oes no campo de processamento digital de sinais, como por exemplo, comunica¸c˜oes sem-fio, sonar e radar, o sinal recebido possui natureza multidimensional que pode incluir intrinsecamente em sua estrutura dimens˜oes como espa¸co, tempo, frequˆencia, c´odigo e polariza¸c˜ao. Em virtude disso, t´ecnicas modernas de processamento que exploram as m´ultiplas dimens˜oes do sinal podem ser desenvolvidas para melhorar o desempenho desses sistemas devido `a estimativas de parˆametros mais acuradas (por exemplo: dire¸c˜ao de partida, dire¸c˜ao de chegada, atraso, frequˆencia Doppler, coeficientes de canal, ru´ıdo de fase) apresentando melhores condi¸c˜oes de identificabilidade. Nesse contexto, esta tese prop˜oe novas modelagens tensoriais para processamento de sinais em arranjos e estima¸c˜ao de canal aplicada `a sistemas de comunica¸c˜oes sem-fio. Na primeira parte desta tese, dedicada `a processamento de sinais em arranjos multidimensionais de sensores e radar, propomos uma nova t´ecnica de pr´e-processamento tensorial para supress˜ao de ru´ıdo que reduz significantemente o efeito do ru´ıdo em dados matriciais e tensoriais implicando em melhores estimativas dos parˆametros desejados. Em seguida, novas modelagens tensoriais baseadas nas decomposi¸c˜oes PARAFAC, Tucker e Nested-PARAFAC s˜ao formuladas, a partir das quais novos algoritmos para estima¸c˜ao conjunta de ˆangulo de partida e ˆangulo de chegada s˜ao propostos. Na segunda parte deste documento, modelagens tensoriais s˜ao desenvolvidas para resolver o problema de estima¸c˜ao de canal em sistemas de comunica¸c˜oes MIMO sem-fio. Primeiramente, propomos um esquema de codifica¸c˜ao e retransmiss˜ao multi-frequencial que concentra o processamento associado `a estima¸c˜ao conjunta dos canais de downlink e uplink na esta¸c˜ao-base. Mostramos que o sinal retransmitido recebido pode ser modelado como a decomposi¸c˜ao PARAFAC de um tensor de terceiraordem. Em seguida, a decomposi¸c˜ao PARAFAC ´e novamente explorada na modelagem de um sistema de comunica¸c˜ao MIMO mais realista que considera perturba¸c˜oes de ru´ıdos de fase em cada antena transmissora e receptora. Algoritmos receptores para estima¸c˜ao de canal e ru´ıdo de fase s˜ao formulados. Resultados de simula¸c˜ao s˜ao apresentados para ilustrar o desempenho dos receptores propostos que s˜ao comparados ao estado-da-arte.Almeida, André Lima Férrer deCosta, João Paulo Carvalho Lustosa daGomes, Paulo Ricardo Barboza2018-12-06T12:12:11Z2018-12-06T12:12:11Z2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfGOMES, P. R. B. Tensor methods for array processing and channel estimation in wireless communications systems. 2018. 135 f. Tese (Doutorado em Engenharia de Teleinformática)–Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2018.http://www.repositorio.ufc.br/handle/riufc/37929engreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2020-11-26T20:42:28Zoai:repositorio.ufc.br:riufc/37929Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:48:19.946492Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv Tensor methods for array processing and channel estimation in wireless communications systems
title Tensor methods for array processing and channel estimation in wireless communications systems
spellingShingle Tensor methods for array processing and channel estimation in wireless communications systems
Gomes, Paulo Ricardo Barboza
Teleinformática
Sistemas de comunicação sem fio
Tensor modeling
Array processing
Wireless communications systems
Channel estimation
title_short Tensor methods for array processing and channel estimation in wireless communications systems
title_full Tensor methods for array processing and channel estimation in wireless communications systems
title_fullStr Tensor methods for array processing and channel estimation in wireless communications systems
title_full_unstemmed Tensor methods for array processing and channel estimation in wireless communications systems
title_sort Tensor methods for array processing and channel estimation in wireless communications systems
author Gomes, Paulo Ricardo Barboza
author_facet Gomes, Paulo Ricardo Barboza
author_role author
dc.contributor.none.fl_str_mv Almeida, André Lima Férrer de
Costa, João Paulo Carvalho Lustosa da
dc.contributor.author.fl_str_mv Gomes, Paulo Ricardo Barboza
dc.subject.por.fl_str_mv Teleinformática
Sistemas de comunicação sem fio
Tensor modeling
Array processing
Wireless communications systems
Channel estimation
topic Teleinformática
Sistemas de comunicação sem fio
Tensor modeling
Array processing
Wireless communications systems
Channel estimation
description In several applications in the field of digital signal processing, for example, wireless communications, sonar and radar, the received signal has a multidimensional nature which can intrinsically include on its structure many dimensions such as space, time, frequency, code, and polarization. In view of this, modern processing techniques which exploit all the signal dimensions can be developed to improve the system performance due to more accurate parameter estimation (for example: direction of departure, direction of arrival, delay, Doppler frequency, channel coefficients, phase noise) with powerful identifiability conditions. In this context, this thesis proposes new tensor modeling approaches for array processing and channel estimation applied to wireless communications systems. In the first part of this thesis, devoted to multidimensional sensor array and radar processing, we propose a new tensor-based preprocessing technique for noise supression which significantly reduces the noise effect in matrix and tensor data leading to more accurate estimates of the desired parameters. Then, new tensor methods capitalizing on the PARAFAC, Tucker and Nested-PARAFAC decompositions are formulated, from which new algorithms for joint direction of departure and direction of arrival estimation are proposed. In the second part of this document, tensor modeling approaches are developed to solve channel estimation problems in MIMO wireless communications systems. Firstly, we propose a new closed-loop and multi-frequency channel training framework that concentrates the processing associated with joint downlink and uplink channel estimation at the base station. We also show that the received closed-loop signal can be modeled as the PARAFAC decomposition of a third-order tensor. Then, the PARAFAC decomposition is also exploited to modeling a more realistic MIMO communication system that considers phase noise perturbations at each transmit and receive antenna. Receiver algorithms for channel and phase noise estimation are formulated. Simulation results are presented to illustrate the performance of the proposed receivers which are compared to state-of-the-art approaches.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-06T12:12:11Z
2018-12-06T12:12:11Z
2018
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv GOMES, P. R. B. Tensor methods for array processing and channel estimation in wireless communications systems. 2018. 135 f. Tese (Doutorado em Engenharia de Teleinformática)–Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2018.
http://www.repositorio.ufc.br/handle/riufc/37929
identifier_str_mv GOMES, P. R. B. Tensor methods for array processing and channel estimation in wireless communications systems. 2018. 135 f. Tese (Doutorado em Engenharia de Teleinformática)–Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2018.
url http://www.repositorio.ufc.br/handle/riufc/37929
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1813028953502253056