Blind MIMO system identification using constrained factor decomposition of output generating function derivatives
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/69516 |
Resumo: | This work addresses the blind identification of complex MIMO systems driven by complex input signals using a new tensor decomposition approach. We show that a collection of successive second-order derivatives of the second generating function of the system outputs can be stored in a higher-order tensor following a constrained factor (CONFAC) decomposition. The proposed decomposition captures the repeated linear combinations involving real and imaginary components of the MIMO system matrix arising from the successive differentiation of output’s generating function derivatives. By exploiting different derivative forms computed at multiple points of the observation space, an “extended” CONFAC decomposition enjoying essential uniqueness is obtained. Thanks to this uniqueness property, a blind estimation of the MIMO system response matrix is possible. |
id |
UFC-7_61b079b6afd1808e0386169be829c1ea |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/69516 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
Blind MIMO system identification using constrained factor decomposition of output generating function derivativesBlind identificationMIMO systemsGenerating functionTensor decompositionThis work addresses the blind identification of complex MIMO systems driven by complex input signals using a new tensor decomposition approach. We show that a collection of successive second-order derivatives of the second generating function of the system outputs can be stored in a higher-order tensor following a constrained factor (CONFAC) decomposition. The proposed decomposition captures the repeated linear combinations involving real and imaginary components of the MIMO system matrix arising from the successive differentiation of output’s generating function derivatives. By exploiting different derivative forms computed at multiple points of the observation space, an “extended” CONFAC decomposition enjoying essential uniqueness is obtained. Thanks to this uniqueness property, a blind estimation of the MIMO system response matrix is possible.Statistical Signal Processing Workshop2022-11-25T14:18:28Z2022-11-25T14:18:28Z2011info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectapplication/pdfALMEIDA, A. L. F. et al. Blind MIMO system identification using constrained factor decomposition of output generating function derivatives. In: STATISTICAL SIGNAL PROCESSING WORKSHOP, 2011, Nice. Anais... Nice: IEEE, 2011. p. 297-300.http://www.repositorio.ufc.br/handle/riufc/69516Almeida, André Lima Férrer deLuciani, XavierStegeman, AlwinComon, Pierreengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2022-11-25T14:18:28Zoai:repositorio.ufc.br:riufc/69516Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:22:48.509883Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Blind MIMO system identification using constrained factor decomposition of output generating function derivatives |
title |
Blind MIMO system identification using constrained factor decomposition of output generating function derivatives |
spellingShingle |
Blind MIMO system identification using constrained factor decomposition of output generating function derivatives Almeida, André Lima Férrer de Blind identification MIMO systems Generating function Tensor decomposition |
title_short |
Blind MIMO system identification using constrained factor decomposition of output generating function derivatives |
title_full |
Blind MIMO system identification using constrained factor decomposition of output generating function derivatives |
title_fullStr |
Blind MIMO system identification using constrained factor decomposition of output generating function derivatives |
title_full_unstemmed |
Blind MIMO system identification using constrained factor decomposition of output generating function derivatives |
title_sort |
Blind MIMO system identification using constrained factor decomposition of output generating function derivatives |
author |
Almeida, André Lima Férrer de |
author_facet |
Almeida, André Lima Férrer de Luciani, Xavier Stegeman, Alwin Comon, Pierre |
author_role |
author |
author2 |
Luciani, Xavier Stegeman, Alwin Comon, Pierre |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Almeida, André Lima Férrer de Luciani, Xavier Stegeman, Alwin Comon, Pierre |
dc.subject.por.fl_str_mv |
Blind identification MIMO systems Generating function Tensor decomposition |
topic |
Blind identification MIMO systems Generating function Tensor decomposition |
description |
This work addresses the blind identification of complex MIMO systems driven by complex input signals using a new tensor decomposition approach. We show that a collection of successive second-order derivatives of the second generating function of the system outputs can be stored in a higher-order tensor following a constrained factor (CONFAC) decomposition. The proposed decomposition captures the repeated linear combinations involving real and imaginary components of the MIMO system matrix arising from the successive differentiation of output’s generating function derivatives. By exploiting different derivative forms computed at multiple points of the observation space, an “extended” CONFAC decomposition enjoying essential uniqueness is obtained. Thanks to this uniqueness property, a blind estimation of the MIMO system response matrix is possible. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 2022-11-25T14:18:28Z 2022-11-25T14:18:28Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
ALMEIDA, A. L. F. et al. Blind MIMO system identification using constrained factor decomposition of output generating function derivatives. In: STATISTICAL SIGNAL PROCESSING WORKSHOP, 2011, Nice. Anais... Nice: IEEE, 2011. p. 297-300. http://www.repositorio.ufc.br/handle/riufc/69516 |
identifier_str_mv |
ALMEIDA, A. L. F. et al. Blind MIMO system identification using constrained factor decomposition of output generating function derivatives. In: STATISTICAL SIGNAL PROCESSING WORKSHOP, 2011, Nice. Anais... Nice: IEEE, 2011. p. 297-300. |
url |
http://www.repositorio.ufc.br/handle/riufc/69516 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Statistical Signal Processing Workshop |
publisher.none.fl_str_mv |
Statistical Signal Processing Workshop |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813028779306516480 |