Time-frequency analysis : The bilinear Hilbert transform and the Carleson theorem
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/18888 |
Resumo: | In 1966, Lennart Carleson proved that the Fourier series of a periodic function, square integrable over a fundamental domain of the real line converges to the same function almost everywhere. This result was revisited years later by Charles Fe erman (1973) and by Lacey and Thiele (2000). It is studied here Lacey and Thiele's work, where they approached the problem through time-frequency analysis. This proof was inspired in a previous work of theirs, where they establish boundedness for the bilinear Hilbert transform in Lebesgue spaces. The study of boundedness for this operator started with the attempts to establish boundedness for the first Calderon's commutator. Also through time-frequency analysis, it will be studied one of the works of Lacey and Thiele about the bilinear Hilbert transform. |
id |
UFC-7_630f954dc8a5943c67c51efe8d7d5670 |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/18888 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
Time-frequency analysis : The bilinear Hilbert transform and the Carleson theoremTime-frequency analysis : The bilinear Hilbert transform and the Carleson theoremAnálise de tempo e frequênciaOperador de CarlesonTransformada de Hilbert bilinearIn 1966, Lennart Carleson proved that the Fourier series of a periodic function, square integrable over a fundamental domain of the real line converges to the same function almost everywhere. This result was revisited years later by Charles Fe erman (1973) and by Lacey and Thiele (2000). It is studied here Lacey and Thiele's work, where they approached the problem through time-frequency analysis. This proof was inspired in a previous work of theirs, where they establish boundedness for the bilinear Hilbert transform in Lebesgue spaces. The study of boundedness for this operator started with the attempts to establish boundedness for the first Calderon's commutator. Also through time-frequency analysis, it will be studied one of the works of Lacey and Thiele about the bilinear Hilbert transform.Em 1966, Lennart Carleson provou que a série de Fourier de uma função periódica, quadrado-integrável em um domínio fundamental na reta converge para a prápria função em quase todo ponto. Esse resultado foi revisitado alguns anos depois por Charles Fefferman (1973) e por Lacey e Thiele (2000). É estudado aqui o trabalho desses ultimos, onde o problema é abordado através de análise de tempo e frequência. Essa demonstração foi inspirada em um trabalho anterior dos mesmos autores em que estabelecem limitação para a transformada de Hilbert bilinear em espaços de Lebesgue. O estudo da limitação desse operador começou com as tentativas de estabelecer limitação para o primeiro comutador de Calderón. Também sob o ponto de vista da análise de tempo e frequência, será estudado um dos trabalhos de Lacey e Thiele sobre a transformada de Hilbert bilinear.Moreira, Diego RibeiroCarneiro, Emanuel Augusto de SouzaOliveira Filho, Itamar Sales de2016-08-03T13:09:30Z2016-08-03T13:09:30Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfOLIVEIRA FILHO, Itamar Sales de. Time-frequency analysis : the bilinear Hilbert transform and the Carleson theorem. 2016. 109 f. Dissertação (Mestrado em Matemática em Rede Nacional) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2016.http://www.repositorio.ufc.br/handle/riufc/18888engreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2019-01-04T12:02:35Zoai:repositorio.ufc.br:riufc/18888Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:26:03.915953Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Time-frequency analysis : The bilinear Hilbert transform and the Carleson theorem Time-frequency analysis : The bilinear Hilbert transform and the Carleson theorem |
title |
Time-frequency analysis : The bilinear Hilbert transform and the Carleson theorem |
spellingShingle |
Time-frequency analysis : The bilinear Hilbert transform and the Carleson theorem Oliveira Filho, Itamar Sales de Análise de tempo e frequência Operador de Carleson Transformada de Hilbert bilinear |
title_short |
Time-frequency analysis : The bilinear Hilbert transform and the Carleson theorem |
title_full |
Time-frequency analysis : The bilinear Hilbert transform and the Carleson theorem |
title_fullStr |
Time-frequency analysis : The bilinear Hilbert transform and the Carleson theorem |
title_full_unstemmed |
Time-frequency analysis : The bilinear Hilbert transform and the Carleson theorem |
title_sort |
Time-frequency analysis : The bilinear Hilbert transform and the Carleson theorem |
author |
Oliveira Filho, Itamar Sales de |
author_facet |
Oliveira Filho, Itamar Sales de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Moreira, Diego Ribeiro Carneiro, Emanuel Augusto de Souza |
dc.contributor.author.fl_str_mv |
Oliveira Filho, Itamar Sales de |
dc.subject.por.fl_str_mv |
Análise de tempo e frequência Operador de Carleson Transformada de Hilbert bilinear |
topic |
Análise de tempo e frequência Operador de Carleson Transformada de Hilbert bilinear |
description |
In 1966, Lennart Carleson proved that the Fourier series of a periodic function, square integrable over a fundamental domain of the real line converges to the same function almost everywhere. This result was revisited years later by Charles Fe erman (1973) and by Lacey and Thiele (2000). It is studied here Lacey and Thiele's work, where they approached the problem through time-frequency analysis. This proof was inspired in a previous work of theirs, where they establish boundedness for the bilinear Hilbert transform in Lebesgue spaces. The study of boundedness for this operator started with the attempts to establish boundedness for the first Calderon's commutator. Also through time-frequency analysis, it will be studied one of the works of Lacey and Thiele about the bilinear Hilbert transform. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-08-03T13:09:30Z 2016-08-03T13:09:30Z 2016 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
OLIVEIRA FILHO, Itamar Sales de. Time-frequency analysis : the bilinear Hilbert transform and the Carleson theorem. 2016. 109 f. Dissertação (Mestrado em Matemática em Rede Nacional) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2016. http://www.repositorio.ufc.br/handle/riufc/18888 |
identifier_str_mv |
OLIVEIRA FILHO, Itamar Sales de. Time-frequency analysis : the bilinear Hilbert transform and the Carleson theorem. 2016. 109 f. Dissertação (Mestrado em Matemática em Rede Nacional) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2016. |
url |
http://www.repositorio.ufc.br/handle/riufc/18888 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813028801865580544 |