Time-frequency analysis : The bilinear Hilbert transform and the Carleson theorem

Detalhes bibliográficos
Autor(a) principal: Oliveira Filho, Itamar Sales de
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/18888
Resumo: In 1966, Lennart Carleson proved that the Fourier series of a periodic function, square integrable over a fundamental domain of the real line converges to the same function almost everywhere. This result was revisited years later by Charles Fe erman (1973) and by Lacey and Thiele (2000). It is studied here Lacey and Thiele's work, where they approached the problem through time-frequency analysis. This proof was inspired in a previous work of theirs, where they establish boundedness for the bilinear Hilbert transform in Lebesgue spaces. The study of boundedness for this operator started with the attempts to establish boundedness for the first Calderon's commutator. Also through time-frequency analysis, it will be studied one of the works of Lacey and Thiele about the bilinear Hilbert transform.
id UFC-7_630f954dc8a5943c67c51efe8d7d5670
oai_identifier_str oai:repositorio.ufc.br:riufc/18888
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Time-frequency analysis : The bilinear Hilbert transform and the Carleson theoremTime-frequency analysis : The bilinear Hilbert transform and the Carleson theoremAnálise de tempo e frequênciaOperador de CarlesonTransformada de Hilbert bilinearIn 1966, Lennart Carleson proved that the Fourier series of a periodic function, square integrable over a fundamental domain of the real line converges to the same function almost everywhere. This result was revisited years later by Charles Fe erman (1973) and by Lacey and Thiele (2000). It is studied here Lacey and Thiele's work, where they approached the problem through time-frequency analysis. This proof was inspired in a previous work of theirs, where they establish boundedness for the bilinear Hilbert transform in Lebesgue spaces. The study of boundedness for this operator started with the attempts to establish boundedness for the first Calderon's commutator. Also through time-frequency analysis, it will be studied one of the works of Lacey and Thiele about the bilinear Hilbert transform.Em 1966, Lennart Carleson provou que a série de Fourier de uma função periódica, quadrado-integrável em um domínio fundamental na reta converge para a prápria função em quase todo ponto. Esse resultado foi revisitado alguns anos depois por Charles Fefferman (1973) e por Lacey e Thiele (2000). É estudado aqui o trabalho desses ultimos, onde o problema é abordado através de análise de tempo e frequência. Essa demonstração foi inspirada em um trabalho anterior dos mesmos autores em que estabelecem limitação para a transformada de Hilbert bilinear em espaços de Lebesgue. O estudo da limitação desse operador começou com as tentativas de estabelecer limitação para o primeiro comutador de Calderón. Também sob o ponto de vista da análise de tempo e frequência, será estudado um dos trabalhos de Lacey e Thiele sobre a transformada de Hilbert bilinear.Moreira, Diego RibeiroCarneiro, Emanuel Augusto de SouzaOliveira Filho, Itamar Sales de2016-08-03T13:09:30Z2016-08-03T13:09:30Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfOLIVEIRA FILHO, Itamar Sales de. Time-frequency analysis : the bilinear Hilbert transform and the Carleson theorem. 2016. 109 f. Dissertação (Mestrado em Matemática em Rede Nacional) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2016.http://www.repositorio.ufc.br/handle/riufc/18888engreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2019-01-04T12:02:35Zoai:repositorio.ufc.br:riufc/18888Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:26:03.915953Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv Time-frequency analysis : The bilinear Hilbert transform and the Carleson theorem
Time-frequency analysis : The bilinear Hilbert transform and the Carleson theorem
title Time-frequency analysis : The bilinear Hilbert transform and the Carleson theorem
spellingShingle Time-frequency analysis : The bilinear Hilbert transform and the Carleson theorem
Oliveira Filho, Itamar Sales de
Análise de tempo e frequência
Operador de Carleson
Transformada de Hilbert bilinear
title_short Time-frequency analysis : The bilinear Hilbert transform and the Carleson theorem
title_full Time-frequency analysis : The bilinear Hilbert transform and the Carleson theorem
title_fullStr Time-frequency analysis : The bilinear Hilbert transform and the Carleson theorem
title_full_unstemmed Time-frequency analysis : The bilinear Hilbert transform and the Carleson theorem
title_sort Time-frequency analysis : The bilinear Hilbert transform and the Carleson theorem
author Oliveira Filho, Itamar Sales de
author_facet Oliveira Filho, Itamar Sales de
author_role author
dc.contributor.none.fl_str_mv Moreira, Diego Ribeiro
Carneiro, Emanuel Augusto de Souza
dc.contributor.author.fl_str_mv Oliveira Filho, Itamar Sales de
dc.subject.por.fl_str_mv Análise de tempo e frequência
Operador de Carleson
Transformada de Hilbert bilinear
topic Análise de tempo e frequência
Operador de Carleson
Transformada de Hilbert bilinear
description In 1966, Lennart Carleson proved that the Fourier series of a periodic function, square integrable over a fundamental domain of the real line converges to the same function almost everywhere. This result was revisited years later by Charles Fe erman (1973) and by Lacey and Thiele (2000). It is studied here Lacey and Thiele's work, where they approached the problem through time-frequency analysis. This proof was inspired in a previous work of theirs, where they establish boundedness for the bilinear Hilbert transform in Lebesgue spaces. The study of boundedness for this operator started with the attempts to establish boundedness for the first Calderon's commutator. Also through time-frequency analysis, it will be studied one of the works of Lacey and Thiele about the bilinear Hilbert transform.
publishDate 2016
dc.date.none.fl_str_mv 2016-08-03T13:09:30Z
2016-08-03T13:09:30Z
2016
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv OLIVEIRA FILHO, Itamar Sales de. Time-frequency analysis : the bilinear Hilbert transform and the Carleson theorem. 2016. 109 f. Dissertação (Mestrado em Matemática em Rede Nacional) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2016.
http://www.repositorio.ufc.br/handle/riufc/18888
identifier_str_mv OLIVEIRA FILHO, Itamar Sales de. Time-frequency analysis : the bilinear Hilbert transform and the Carleson theorem. 2016. 109 f. Dissertação (Mestrado em Matemática em Rede Nacional) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2016.
url http://www.repositorio.ufc.br/handle/riufc/18888
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1813028801865580544