Link adaptation solutions based on reinforcement learning for 5G new radio
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/51771 |
Resumo: | In this work we propose two self-exploratory frameworks, based on reinforcement learning (RL) for link adaptation in fifth generation (5G) wireless communication systems. Firstly, a Q-learning solution for adaptive modulation and coding (AMC) is presented that allows the base station to learn the mapping between the modulation and coding scheme (MCS) and the channel quality indicator (CQI), in order to maximize the spectral efficiency of the system. Compared to classic AMC solutions, the proposed solution achieves superior performances in terms of spectral efficiency and block error rate (BLER). In the second part of this work, a broader problem is considered in the context of multiple-input multiple-output (MIMO) systems with spatial multiplexing. For this system, a solution based on Q-learning is presented for the joint selection of the MCS and the number of spatial transmission layers (spatial multiplexing factor), as well as the precoding scheme. In this case, the mapping is learned based on the information from the CQI and the rank indicator (RI). According to our simulation results, the proposed solution achieves a performance similar to that of the reference (genie-aided) solution, but with less signaling compared to the one specified in the 5G standard. |
id |
UFC-7_7a7776a1c93763a2793a2685f83f2ae8 |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/51771 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
Link adaptation solutions based on reinforcement learning for 5G new radioTeleinformáticaInteligência artificialAprendizado do computadorReinforcement learningLink adaptationRank adaptationIn this work we propose two self-exploratory frameworks, based on reinforcement learning (RL) for link adaptation in fifth generation (5G) wireless communication systems. Firstly, a Q-learning solution for adaptive modulation and coding (AMC) is presented that allows the base station to learn the mapping between the modulation and coding scheme (MCS) and the channel quality indicator (CQI), in order to maximize the spectral efficiency of the system. Compared to classic AMC solutions, the proposed solution achieves superior performances in terms of spectral efficiency and block error rate (BLER). In the second part of this work, a broader problem is considered in the context of multiple-input multiple-output (MIMO) systems with spatial multiplexing. For this system, a solution based on Q-learning is presented for the joint selection of the MCS and the number of spatial transmission layers (spatial multiplexing factor), as well as the precoding scheme. In this case, the mapping is learned based on the information from the CQI and the rank indicator (RI). According to our simulation results, the proposed solution achieves a performance similar to that of the reference (genie-aided) solution, but with less signaling compared to the one specified in the 5G standard.Neste trabalho são propostos dois frameworks auto-exploratórios, baseados em aprendizado por reforço para a adaptação de enlace em sistemas de comunicações sem fio 5G. Primeiramente, é apresentada uma solução baseada em Q-learning para modulação e codificação adaptativa que permite a estação base aprender o mapeamento entre o esquema de modulação e codificação e o indicador de qualidade do canal (do inglês CQI- channel quality indicator), visando maximizar a eficiência espectral do sistema. Comparada às soluções clássicas de modulação e codificação adaptativa, a solução proposta alcança desempenho superior em termos de eficiência espectral e taxa de erro de blocos. Na segunda parte deste trabalho, considera-se um problema mais amplo no contexto de sistemas com múltiplas entradas e múltiplas saídas (do inglês, MIMO - multiple-input multiple-output), em que a estação base e o usuário são equipados com arranjos de antenas. Para este sistema, é apresentada uma solução baseada em Q-learning para a seleção conjunta do esquema de modulação e codificação e do número de camadas espaciais de transmissão (fator de multiplexação espacial), bem como o esquema de precodificação. Neste caso, o mapeamento é aprendido baseado nas informações de CQI e do indicador de posto da tramissão (do inglês, RI - rank indicator). De acordo com resultados de simulação, a solução proposta atinge um desempenho similar ao da solução de referência (genie-aided) porém com menor quantidade de sinalização necessária quando comparada à sinalização especificada no padrão do 5G.Almeida, André Lima Férrer deCavalcanti, Francisco Rodrigo PortoMota, Mateus Pontes2020-05-18T00:18:17Z2020-05-18T00:18:17Z2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfMOTA, M. P. Link adaptation solutions based on reinforcement learning for 5G new radio. 2020. 62 f. Dissertação (Mestrado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2020.http://www.repositorio.ufc.br/handle/riufc/51771engreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2020-11-26T20:33:23Zoai:repositorio.ufc.br:riufc/51771Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:33:25.400989Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Link adaptation solutions based on reinforcement learning for 5G new radio |
title |
Link adaptation solutions based on reinforcement learning for 5G new radio |
spellingShingle |
Link adaptation solutions based on reinforcement learning for 5G new radio Mota, Mateus Pontes Teleinformática Inteligência artificial Aprendizado do computador Reinforcement learning Link adaptation Rank adaptation |
title_short |
Link adaptation solutions based on reinforcement learning for 5G new radio |
title_full |
Link adaptation solutions based on reinforcement learning for 5G new radio |
title_fullStr |
Link adaptation solutions based on reinforcement learning for 5G new radio |
title_full_unstemmed |
Link adaptation solutions based on reinforcement learning for 5G new radio |
title_sort |
Link adaptation solutions based on reinforcement learning for 5G new radio |
author |
Mota, Mateus Pontes |
author_facet |
Mota, Mateus Pontes |
author_role |
author |
dc.contributor.none.fl_str_mv |
Almeida, André Lima Férrer de Cavalcanti, Francisco Rodrigo Porto |
dc.contributor.author.fl_str_mv |
Mota, Mateus Pontes |
dc.subject.por.fl_str_mv |
Teleinformática Inteligência artificial Aprendizado do computador Reinforcement learning Link adaptation Rank adaptation |
topic |
Teleinformática Inteligência artificial Aprendizado do computador Reinforcement learning Link adaptation Rank adaptation |
description |
In this work we propose two self-exploratory frameworks, based on reinforcement learning (RL) for link adaptation in fifth generation (5G) wireless communication systems. Firstly, a Q-learning solution for adaptive modulation and coding (AMC) is presented that allows the base station to learn the mapping between the modulation and coding scheme (MCS) and the channel quality indicator (CQI), in order to maximize the spectral efficiency of the system. Compared to classic AMC solutions, the proposed solution achieves superior performances in terms of spectral efficiency and block error rate (BLER). In the second part of this work, a broader problem is considered in the context of multiple-input multiple-output (MIMO) systems with spatial multiplexing. For this system, a solution based on Q-learning is presented for the joint selection of the MCS and the number of spatial transmission layers (spatial multiplexing factor), as well as the precoding scheme. In this case, the mapping is learned based on the information from the CQI and the rank indicator (RI). According to our simulation results, the proposed solution achieves a performance similar to that of the reference (genie-aided) solution, but with less signaling compared to the one specified in the 5G standard. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-05-18T00:18:17Z 2020-05-18T00:18:17Z 2020 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
MOTA, M. P. Link adaptation solutions based on reinforcement learning for 5G new radio. 2020. 62 f. Dissertação (Mestrado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2020. http://www.repositorio.ufc.br/handle/riufc/51771 |
identifier_str_mv |
MOTA, M. P. Link adaptation solutions based on reinforcement learning for 5G new radio. 2020. 62 f. Dissertação (Mestrado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2020. |
url |
http://www.repositorio.ufc.br/handle/riufc/51771 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813028853567717376 |