Sum-power minimization beamforming for dense networks

Detalhes bibliográficos
Autor(a) principal: Cavalcante, Eduardo de Olivindo
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/30471
Resumo: The employment of dense networks is a promising solution for the upcoming 5G systems. The use of a larger number of base stations (BSs) per unit area provides a reduction in transmission distance and can significantly improve spatial multiplexing. However, the densification also brings worries mainly related to higher interference due to the reduced distances. This master thesis aims to present ways to manage interference in dense scenarios by using sum- power minimization beamforming. More specifically, we focus in two aspects of dense networks: The solution of large-scale problems and the management of the cross-link interferences in dense networks that employ dynamic time division duplex (TDD). For the first aspect, we present an performance analysis for a alternating direction method of multipliers (ADMM)-based solution for the beamforming,which is considered to be well adapted to large-scale optimization. In the simulations we compare the ADMM solution to a well known semidefinite programming (SDP) solution in several network configurations. The results indicate that the ADMM approach has faster convergence for large-scale scenarios when modest accuracy is required. For dynamic TDD scenarios, we propose solutions for different beamforming problems. In the first case, we aim to protect the uplink (UL) communication by forcing a constraint on the BS to BS interference power while guaranteeing downlink (DL) signal-to-interference-plus-noise ratio (SINR). We propose a centralized and a primal decomposition based distributed solution. The simulation results show that UL performance is improved and DL SINR targets are guaranteed, and that the distributed solution iterates towards the centralized one, while feasible beamformers can be obtained at intermediate iterations at the cost of suboptimal power. In the second dynamic TDD problem, we aim to guarantee a minimum SINR for UL and DL users. We propose a centralized and an ADMM-based distributed solution. The simulation results show that both approaches achieve good performance and the distributed solution iterates towards the centralized one, while the signaling load can be controlled by fixing the number of iterations at the cost of close to optimal power and SINR performance.
id UFC-7_7f517db465a57973ccacc3392aa08692
oai_identifier_str oai:repositorio.ufc.br:riufc/30471
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Sum-power minimization beamforming for dense networksTeleinformáticaSistemas de comunicação sem fioSistemas de comunicação móvelBeamformingPower minimizationDense networksThe employment of dense networks is a promising solution for the upcoming 5G systems. The use of a larger number of base stations (BSs) per unit area provides a reduction in transmission distance and can significantly improve spatial multiplexing. However, the densification also brings worries mainly related to higher interference due to the reduced distances. This master thesis aims to present ways to manage interference in dense scenarios by using sum- power minimization beamforming. More specifically, we focus in two aspects of dense networks: The solution of large-scale problems and the management of the cross-link interferences in dense networks that employ dynamic time division duplex (TDD). For the first aspect, we present an performance analysis for a alternating direction method of multipliers (ADMM)-based solution for the beamforming,which is considered to be well adapted to large-scale optimization. In the simulations we compare the ADMM solution to a well known semidefinite programming (SDP) solution in several network configurations. The results indicate that the ADMM approach has faster convergence for large-scale scenarios when modest accuracy is required. For dynamic TDD scenarios, we propose solutions for different beamforming problems. In the first case, we aim to protect the uplink (UL) communication by forcing a constraint on the BS to BS interference power while guaranteeing downlink (DL) signal-to-interference-plus-noise ratio (SINR). We propose a centralized and a primal decomposition based distributed solution. The simulation results show that UL performance is improved and DL SINR targets are guaranteed, and that the distributed solution iterates towards the centralized one, while feasible beamformers can be obtained at intermediate iterations at the cost of suboptimal power. In the second dynamic TDD problem, we aim to guarantee a minimum SINR for UL and DL users. We propose a centralized and an ADMM-based distributed solution. The simulation results show that both approaches achieve good performance and the distributed solution iterates towards the centralized one, while the signaling load can be controlled by fixing the number of iterations at the cost of close to optimal power and SINR performance.O emprego de redes densas é uma solução promissora para os futuros sistemas 5G. O uso de um maior número de BSs (do inglês, base station) por unidade de área provê uma redução na distancia de transmissão e pode melhorar significativamente a multiplexação espacial. Porém, a densificação traz preocupações principalmente relacionadas à maior interferência, devido às distâncias reduzidas. Esta dissertação visa apresentar formas de gerir interferência em cenários densos através do uso da formação de feixes para minimização da soma de potências. Mais especificamente, focamos em dois aspectos das redes densas: A solução de problemas de larga-escala e a gerência de interferências de enlace cruzado em redes densas que utilizam TDD (do inglês, time division duplexing) dinâmico. Para o primeiro aspecto, nós apresentamos uma análise de desempenho para uma solução de formação de feixes baseada em ADMM (do inglês, alternating directions method of multipliers) que é considerada ser bem adaptada para otimização em larga-escala. Por simulações, nós comparamos esta solução com a bem conhecida solução via SDP (do inglês, semidefinite programming) em diversas configurações de rede. Os resultados indicam que a solução ADMM proporciona convergência rápida com acurácia modesta. Para cenários TDD dinâmico, nós propomos dois problemas de formação de feixes. No primeiro, nós almejamos proteger a comunicação UL (do inglês uplink) forçando uma limitação na potência de interferência entre BSs, enquanto garantimos uma SINR (do inglês, signal-to-interference- plus-noise ratio) mínima para o DL (do inglês, downlink). Propomos uma solução centralizada e uma distribuída baseada em decomposição primal. Os resultados de simulação mostram que o desempenho do UL é melhorado e os alvos de SINR para o DL são garantidos, e que a solução distribuída itera em direção à centralizada, enquanto soluções realizáveis podem ser obtidas em iterações intermediárias ao custo de potência subótima. No segundo problema para TDD dinâmico, nós visamos garantir uma SINR mínima para usuários em UL e DL. Propomos uma solução centralizada e uma solução distribuída baseada em ADMM. Os resultados de simulação mostram que ambas as abordagens alcançam bom desempenho e que a solução distribuída itera em direção à centralizada, enquanto a carga de sinalização pode ser controlada fixando o número de iterações ao custo de desempenhos de SINR e potência próximos ao ótimo.Silva, Yuri Carvalho BarbosaCavalcante, Eduardo de Olivindo2018-03-21T17:07:27Z2018-03-21T17:07:27Z2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfCAVALCANTE, E. O. Sum-power minimization beamforming for dense networks. 2018. 78 f. Dissertação (Mestrado em Engenharia de Teleinformática)–Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2018.http://www.repositorio.ufc.br/handle/riufc/30471engreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2022-02-23T13:37:03Zoai:repositorio.ufc.br:riufc/30471Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:30:22.110753Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv Sum-power minimization beamforming for dense networks
title Sum-power minimization beamforming for dense networks
spellingShingle Sum-power minimization beamforming for dense networks
Cavalcante, Eduardo de Olivindo
Teleinformática
Sistemas de comunicação sem fio
Sistemas de comunicação móvel
Beamforming
Power minimization
Dense networks
title_short Sum-power minimization beamforming for dense networks
title_full Sum-power minimization beamforming for dense networks
title_fullStr Sum-power minimization beamforming for dense networks
title_full_unstemmed Sum-power minimization beamforming for dense networks
title_sort Sum-power minimization beamforming for dense networks
author Cavalcante, Eduardo de Olivindo
author_facet Cavalcante, Eduardo de Olivindo
author_role author
dc.contributor.none.fl_str_mv Silva, Yuri Carvalho Barbosa
dc.contributor.author.fl_str_mv Cavalcante, Eduardo de Olivindo
dc.subject.por.fl_str_mv Teleinformática
Sistemas de comunicação sem fio
Sistemas de comunicação móvel
Beamforming
Power minimization
Dense networks
topic Teleinformática
Sistemas de comunicação sem fio
Sistemas de comunicação móvel
Beamforming
Power minimization
Dense networks
description The employment of dense networks is a promising solution for the upcoming 5G systems. The use of a larger number of base stations (BSs) per unit area provides a reduction in transmission distance and can significantly improve spatial multiplexing. However, the densification also brings worries mainly related to higher interference due to the reduced distances. This master thesis aims to present ways to manage interference in dense scenarios by using sum- power minimization beamforming. More specifically, we focus in two aspects of dense networks: The solution of large-scale problems and the management of the cross-link interferences in dense networks that employ dynamic time division duplex (TDD). For the first aspect, we present an performance analysis for a alternating direction method of multipliers (ADMM)-based solution for the beamforming,which is considered to be well adapted to large-scale optimization. In the simulations we compare the ADMM solution to a well known semidefinite programming (SDP) solution in several network configurations. The results indicate that the ADMM approach has faster convergence for large-scale scenarios when modest accuracy is required. For dynamic TDD scenarios, we propose solutions for different beamforming problems. In the first case, we aim to protect the uplink (UL) communication by forcing a constraint on the BS to BS interference power while guaranteeing downlink (DL) signal-to-interference-plus-noise ratio (SINR). We propose a centralized and a primal decomposition based distributed solution. The simulation results show that UL performance is improved and DL SINR targets are guaranteed, and that the distributed solution iterates towards the centralized one, while feasible beamformers can be obtained at intermediate iterations at the cost of suboptimal power. In the second dynamic TDD problem, we aim to guarantee a minimum SINR for UL and DL users. We propose a centralized and an ADMM-based distributed solution. The simulation results show that both approaches achieve good performance and the distributed solution iterates towards the centralized one, while the signaling load can be controlled by fixing the number of iterations at the cost of close to optimal power and SINR performance.
publishDate 2018
dc.date.none.fl_str_mv 2018-03-21T17:07:27Z
2018-03-21T17:07:27Z
2018
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv CAVALCANTE, E. O. Sum-power minimization beamforming for dense networks. 2018. 78 f. Dissertação (Mestrado em Engenharia de Teleinformática)–Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2018.
http://www.repositorio.ufc.br/handle/riufc/30471
identifier_str_mv CAVALCANTE, E. O. Sum-power minimization beamforming for dense networks. 2018. 78 f. Dissertação (Mestrado em Engenharia de Teleinformática)–Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2018.
url http://www.repositorio.ufc.br/handle/riufc/30471
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1813028832271138816