Radio resource management techniques for 5G networks based on machine learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/58915 |
Resumo: | The fifth generation (5G) of mobile communications has been envisioned to expand the capabilities of wireless networks and, consequently, to provide optimized support to several use cases and design requirements. In view of this, massive multiple-input multiple-output antenna arrays and the operation at the millimeter wave (mmWave) frequency range are important technical solutions able to support an expressive enhancement of the data traffic capacity, a recognizably relevant demand of 5G. In this context, the present thesis investigates radio resource management (RRM) techniques to explore these technologies and to overcome their main challenges, such as hostile propagation conditions, demanding channel state information (CSI) acquisition, and transceiver implementation complexity. Moreover, the proposed solutions rely on the main technical specifications from the third partnership project (3GPP) aiming to consider practical implementation aspects. In the first part of this thesis, devoted to the hybrid beamforming design based on the joint spatial division and multiplexing scheme, we propose a framework to exploit a limited CSI feedback and to reduce the inter-cell interference considering different mmWave propagation conditions. In the second part of this document, we investigate an uplink power control framework compliant with the beam-centric design of the air interface of 5G radio access technology. The proposed signaling scheme among base stations allows a flexible transmit power control able to increase the energy efficiency by the enhancement of the system data rate and to reduce the power consumption while limiting interference to neighbor cells. This thesis explores different machine learning (ML) paradigms to optimize 5G network deployment. We investigate how ML can help to uncover unknown properties of the wireless channel and establish successful RRM strategies from the knowledge determined by the interaction with the network. Numerical analyses are presented to validate the proposed methods and to demonstrate that, despite the limitations imposed by the 3GPP technical specifications, such as hardware restrictions and available signaling, the proposed solutions improve system performance and achieve relevant engineering requirements, such as data rate improvement and energy efficiency enhancement with reduced signaling overhead and computational complexity |
id |
UFC-7_97e569432baaa0184907ad17620e2e0e |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/58915 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
Radio resource management techniques for 5G networks based on machine learningGerenciamento de recursos de rádioFormatação híbrida de feixesControle de potênciaAprendizado de máquinaThe fifth generation (5G) of mobile communications has been envisioned to expand the capabilities of wireless networks and, consequently, to provide optimized support to several use cases and design requirements. In view of this, massive multiple-input multiple-output antenna arrays and the operation at the millimeter wave (mmWave) frequency range are important technical solutions able to support an expressive enhancement of the data traffic capacity, a recognizably relevant demand of 5G. In this context, the present thesis investigates radio resource management (RRM) techniques to explore these technologies and to overcome their main challenges, such as hostile propagation conditions, demanding channel state information (CSI) acquisition, and transceiver implementation complexity. Moreover, the proposed solutions rely on the main technical specifications from the third partnership project (3GPP) aiming to consider practical implementation aspects. In the first part of this thesis, devoted to the hybrid beamforming design based on the joint spatial division and multiplexing scheme, we propose a framework to exploit a limited CSI feedback and to reduce the inter-cell interference considering different mmWave propagation conditions. In the second part of this document, we investigate an uplink power control framework compliant with the beam-centric design of the air interface of 5G radio access technology. The proposed signaling scheme among base stations allows a flexible transmit power control able to increase the energy efficiency by the enhancement of the system data rate and to reduce the power consumption while limiting interference to neighbor cells. This thesis explores different machine learning (ML) paradigms to optimize 5G network deployment. We investigate how ML can help to uncover unknown properties of the wireless channel and establish successful RRM strategies from the knowledge determined by the interaction with the network. Numerical analyses are presented to validate the proposed methods and to demonstrate that, despite the limitations imposed by the 3GPP technical specifications, such as hardware restrictions and available signaling, the proposed solutions improve system performance and achieve relevant engineering requirements, such as data rate improvement and energy efficiency enhancement with reduced signaling overhead and computational complexityA quinta geração (5G) de comunicações móveis foi projetada para expandir os recursos das redes sem fio e, consequentemente, fornecer suporte otimizado a vários casos de uso e requisitos de projeto. Em vista disso, conjuntos massivos de antenas de múltiplas-entradas e múltiplas-saídas e a operação na faixa de frequência de ondas milimétricas (mmWave) são importantes soluções técnicas capazes de suportar um aprimoramento expressivo da capacidade de tráfego de dados, uma demanda reconhecidamente relevante de 5G. Nesse contexto, a presente tese investiga técnicas de gerenciamento de recursos de rádio para explorar essas tecnologias e superar seus principais desafios, como condições de propagação hostis, aquisição de informações sobre o estado do canal (CSI) e complexidade de implementação do transceptor. Além disso, as soluções propostas baseiam-se nas principais especificações técnicas do projeto de parceria para a terceira geração (3GPP), com o objetivo de considerar aspectos práticos da implementação. Na primeira parte desta tese, dedicada ao projeto de formatação híbrida de feixes com base no esquema de divisão espacial e multiplexação conjunta, propomos uma estrutura para explorar um feedback limitado da CSI e reduzir a interferência intercelular, considerando diferentes condições de propagação em mmWave. Na segunda parte deste documento, investigamos uma estrutura de controle de potência do enlace de subida compatível com o projeto centrado em feixes da interface aérea da tecnologia de acesso por rádio de 5G. O esquema de sinalização proposto entre estações base permite um controle flexível da potência de transmissão capaz de aumentar a eficiência energética, aprimorando a taxa de dados do sistema e reduzir o consumo de energia, limitando a interferência nas células vizinhas. Esta tese explora diferentes paradigmas de aprendizado de máquina (ML) para otimizar a implantação da rede 5G. Investigamos como o ML pode ajudar na descoberta de propriedades desconhecidas do canal sem fio e no estabelecimento de estratégias bem-sucedidas de RMM a partir do conhecimento determinado pela interação com a rede. Análises numéricas são apresentadas para validar os métodos propostos e demonstrar que, apesar das limitações impostas pelas especificações técnicas do 3GPP, como restrições de hardware e sinalização disponível, as soluções propostas melhoram o desempenho do sistema e atendem a requisitos de engenharia relevantes, como melhoria da taxa de dados e aprimoramento da eficiência energética com reduzidas sobrecarga de sinalização e complexidade computacional.Maciel, Tarcísio FerreiraAraújo, Daniel CostaCosta Neto, Francisco Hugo2021-06-11T12:01:39Z2021-06-11T12:01:39Z2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfCOSTA NETO, Francisco Hugo. Radio resource management techniques for 5G networks based on machine learning. 2020. 108 f. Tese (Doutorado em Engenharia de Teleinformática) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia de Teleinformática, Fortaleza, 2020.http://www.repositorio.ufc.br/handle/riufc/58915engreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2022-06-01T13:52:58Zoai:repositorio.ufc.br:riufc/58915Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:27:38.023698Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Radio resource management techniques for 5G networks based on machine learning |
title |
Radio resource management techniques for 5G networks based on machine learning |
spellingShingle |
Radio resource management techniques for 5G networks based on machine learning Costa Neto, Francisco Hugo Gerenciamento de recursos de rádio Formatação híbrida de feixes Controle de potência Aprendizado de máquina |
title_short |
Radio resource management techniques for 5G networks based on machine learning |
title_full |
Radio resource management techniques for 5G networks based on machine learning |
title_fullStr |
Radio resource management techniques for 5G networks based on machine learning |
title_full_unstemmed |
Radio resource management techniques for 5G networks based on machine learning |
title_sort |
Radio resource management techniques for 5G networks based on machine learning |
author |
Costa Neto, Francisco Hugo |
author_facet |
Costa Neto, Francisco Hugo |
author_role |
author |
dc.contributor.none.fl_str_mv |
Maciel, Tarcísio Ferreira Araújo, Daniel Costa |
dc.contributor.author.fl_str_mv |
Costa Neto, Francisco Hugo |
dc.subject.por.fl_str_mv |
Gerenciamento de recursos de rádio Formatação híbrida de feixes Controle de potência Aprendizado de máquina |
topic |
Gerenciamento de recursos de rádio Formatação híbrida de feixes Controle de potência Aprendizado de máquina |
description |
The fifth generation (5G) of mobile communications has been envisioned to expand the capabilities of wireless networks and, consequently, to provide optimized support to several use cases and design requirements. In view of this, massive multiple-input multiple-output antenna arrays and the operation at the millimeter wave (mmWave) frequency range are important technical solutions able to support an expressive enhancement of the data traffic capacity, a recognizably relevant demand of 5G. In this context, the present thesis investigates radio resource management (RRM) techniques to explore these technologies and to overcome their main challenges, such as hostile propagation conditions, demanding channel state information (CSI) acquisition, and transceiver implementation complexity. Moreover, the proposed solutions rely on the main technical specifications from the third partnership project (3GPP) aiming to consider practical implementation aspects. In the first part of this thesis, devoted to the hybrid beamforming design based on the joint spatial division and multiplexing scheme, we propose a framework to exploit a limited CSI feedback and to reduce the inter-cell interference considering different mmWave propagation conditions. In the second part of this document, we investigate an uplink power control framework compliant with the beam-centric design of the air interface of 5G radio access technology. The proposed signaling scheme among base stations allows a flexible transmit power control able to increase the energy efficiency by the enhancement of the system data rate and to reduce the power consumption while limiting interference to neighbor cells. This thesis explores different machine learning (ML) paradigms to optimize 5G network deployment. We investigate how ML can help to uncover unknown properties of the wireless channel and establish successful RRM strategies from the knowledge determined by the interaction with the network. Numerical analyses are presented to validate the proposed methods and to demonstrate that, despite the limitations imposed by the 3GPP technical specifications, such as hardware restrictions and available signaling, the proposed solutions improve system performance and achieve relevant engineering requirements, such as data rate improvement and energy efficiency enhancement with reduced signaling overhead and computational complexity |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 2021-06-11T12:01:39Z 2021-06-11T12:01:39Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
COSTA NETO, Francisco Hugo. Radio resource management techniques for 5G networks based on machine learning. 2020. 108 f. Tese (Doutorado em Engenharia de Teleinformática) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia de Teleinformática, Fortaleza, 2020. http://www.repositorio.ufc.br/handle/riufc/58915 |
identifier_str_mv |
COSTA NETO, Francisco Hugo. Radio resource management techniques for 5G networks based on machine learning. 2020. 108 f. Tese (Doutorado em Engenharia de Teleinformática) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia de Teleinformática, Fortaleza, 2020. |
url |
http://www.repositorio.ufc.br/handle/riufc/58915 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813028812855705600 |