An empirical evaluation of robust gaussian process models for system identification

Detalhes bibliográficos
Autor(a) principal: Mattos, César Lincoln Cavalcante
Data de Publicação: 2015
Outros Autores: Santos, José Daniel de Alencar, Barreto, Guilherme de Alencar
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/70692
Resumo: System identification comprises a number of linear and non-linear tools for black-box modeling of dynamical systems, with applications in several areas of engineering, control, biology and economy. However, the usual Gaussian noise assumption is not always satisfied, specially if data is corrupted by impulsive noise or outliers. Bearing this in mind, the present paper aims at evaluating how Gaussian Process (GP) models perform in system identification tasks in the presence of outliers. More specifically, we compare the performances of two existing robust GP-based regression models in experiments involving five bench-marking datasets with controlled outlier inclusion. The results indicate that, although still sensitive in some degree to the presence of outliers, the robust models are indeed able to achieve lower prediction errors in corrupted scenarios when compared to conventional GP-based approach.
id UFC-7_a3a2a73544d937124cbe56b5eef17a4a
oai_identifier_str oai:repositorio.ufc.br:riufc/70692
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling An empirical evaluation of robust gaussian process models for system identificationRobust system identificationGaussian processApproximate Bayesian inferenceSystem identification comprises a number of linear and non-linear tools for black-box modeling of dynamical systems, with applications in several areas of engineering, control, biology and economy. However, the usual Gaussian noise assumption is not always satisfied, specially if data is corrupted by impulsive noise or outliers. Bearing this in mind, the present paper aims at evaluating how Gaussian Process (GP) models perform in system identification tasks in the presence of outliers. More specifically, we compare the performances of two existing robust GP-based regression models in experiments involving five bench-marking datasets with controlled outlier inclusion. The results indicate that, although still sensitive in some degree to the presence of outliers, the robust models are indeed able to achieve lower prediction errors in corrupted scenarios when compared to conventional GP-based approach.International Conference on Intelligent Data Engineering and Automated Learning2023-02-09T16:11:26Z2023-02-09T16:11:26Z2015info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectapplication/pdfMATTOS, C. L. C.; SANTOS, J. D. A.; BARRETO, G. A. An empirical evaluation of robust gaussian process models for system identification. In: INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING, 16., 2015, Breslávia. Anais... Breslávia, 2015. p. 1-9.http://www.repositorio.ufc.br/handle/riufc/70692Mattos, César Lincoln CavalcanteSantos, José Daniel de AlencarBarreto, Guilherme de Alencarengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2023-02-09T16:11:26Zoai:repositorio.ufc.br:riufc/70692Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T19:02:58.181640Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv An empirical evaluation of robust gaussian process models for system identification
title An empirical evaluation of robust gaussian process models for system identification
spellingShingle An empirical evaluation of robust gaussian process models for system identification
Mattos, César Lincoln Cavalcante
Robust system identification
Gaussian process
Approximate Bayesian inference
title_short An empirical evaluation of robust gaussian process models for system identification
title_full An empirical evaluation of robust gaussian process models for system identification
title_fullStr An empirical evaluation of robust gaussian process models for system identification
title_full_unstemmed An empirical evaluation of robust gaussian process models for system identification
title_sort An empirical evaluation of robust gaussian process models for system identification
author Mattos, César Lincoln Cavalcante
author_facet Mattos, César Lincoln Cavalcante
Santos, José Daniel de Alencar
Barreto, Guilherme de Alencar
author_role author
author2 Santos, José Daniel de Alencar
Barreto, Guilherme de Alencar
author2_role author
author
dc.contributor.author.fl_str_mv Mattos, César Lincoln Cavalcante
Santos, José Daniel de Alencar
Barreto, Guilherme de Alencar
dc.subject.por.fl_str_mv Robust system identification
Gaussian process
Approximate Bayesian inference
topic Robust system identification
Gaussian process
Approximate Bayesian inference
description System identification comprises a number of linear and non-linear tools for black-box modeling of dynamical systems, with applications in several areas of engineering, control, biology and economy. However, the usual Gaussian noise assumption is not always satisfied, specially if data is corrupted by impulsive noise or outliers. Bearing this in mind, the present paper aims at evaluating how Gaussian Process (GP) models perform in system identification tasks in the presence of outliers. More specifically, we compare the performances of two existing robust GP-based regression models in experiments involving five bench-marking datasets with controlled outlier inclusion. The results indicate that, although still sensitive in some degree to the presence of outliers, the robust models are indeed able to achieve lower prediction errors in corrupted scenarios when compared to conventional GP-based approach.
publishDate 2015
dc.date.none.fl_str_mv 2015
2023-02-09T16:11:26Z
2023-02-09T16:11:26Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv MATTOS, C. L. C.; SANTOS, J. D. A.; BARRETO, G. A. An empirical evaluation of robust gaussian process models for system identification. In: INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING, 16., 2015, Breslávia. Anais... Breslávia, 2015. p. 1-9.
http://www.repositorio.ufc.br/handle/riufc/70692
identifier_str_mv MATTOS, C. L. C.; SANTOS, J. D. A.; BARRETO, G. A. An empirical evaluation of robust gaussian process models for system identification. In: INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING, 16., 2015, Breslávia. Anais... Breslávia, 2015. p. 1-9.
url http://www.repositorio.ufc.br/handle/riufc/70692
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv International Conference on Intelligent Data Engineering and Automated Learning
publisher.none.fl_str_mv International Conference on Intelligent Data Engineering and Automated Learning
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1813029046381969408