An empirical evaluation of robust gaussian process models for system identification
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/70692 |
Resumo: | System identification comprises a number of linear and non-linear tools for black-box modeling of dynamical systems, with applications in several areas of engineering, control, biology and economy. However, the usual Gaussian noise assumption is not always satisfied, specially if data is corrupted by impulsive noise or outliers. Bearing this in mind, the present paper aims at evaluating how Gaussian Process (GP) models perform in system identification tasks in the presence of outliers. More specifically, we compare the performances of two existing robust GP-based regression models in experiments involving five bench-marking datasets with controlled outlier inclusion. The results indicate that, although still sensitive in some degree to the presence of outliers, the robust models are indeed able to achieve lower prediction errors in corrupted scenarios when compared to conventional GP-based approach. |
id |
UFC-7_a3a2a73544d937124cbe56b5eef17a4a |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/70692 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
An empirical evaluation of robust gaussian process models for system identificationRobust system identificationGaussian processApproximate Bayesian inferenceSystem identification comprises a number of linear and non-linear tools for black-box modeling of dynamical systems, with applications in several areas of engineering, control, biology and economy. However, the usual Gaussian noise assumption is not always satisfied, specially if data is corrupted by impulsive noise or outliers. Bearing this in mind, the present paper aims at evaluating how Gaussian Process (GP) models perform in system identification tasks in the presence of outliers. More specifically, we compare the performances of two existing robust GP-based regression models in experiments involving five bench-marking datasets with controlled outlier inclusion. The results indicate that, although still sensitive in some degree to the presence of outliers, the robust models are indeed able to achieve lower prediction errors in corrupted scenarios when compared to conventional GP-based approach.International Conference on Intelligent Data Engineering and Automated Learning2023-02-09T16:11:26Z2023-02-09T16:11:26Z2015info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectapplication/pdfMATTOS, C. L. C.; SANTOS, J. D. A.; BARRETO, G. A. An empirical evaluation of robust gaussian process models for system identification. In: INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING, 16., 2015, Breslávia. Anais... Breslávia, 2015. p. 1-9.http://www.repositorio.ufc.br/handle/riufc/70692Mattos, César Lincoln CavalcanteSantos, José Daniel de AlencarBarreto, Guilherme de Alencarengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2023-02-09T16:11:26Zoai:repositorio.ufc.br:riufc/70692Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T19:02:58.181640Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
An empirical evaluation of robust gaussian process models for system identification |
title |
An empirical evaluation of robust gaussian process models for system identification |
spellingShingle |
An empirical evaluation of robust gaussian process models for system identification Mattos, César Lincoln Cavalcante Robust system identification Gaussian process Approximate Bayesian inference |
title_short |
An empirical evaluation of robust gaussian process models for system identification |
title_full |
An empirical evaluation of robust gaussian process models for system identification |
title_fullStr |
An empirical evaluation of robust gaussian process models for system identification |
title_full_unstemmed |
An empirical evaluation of robust gaussian process models for system identification |
title_sort |
An empirical evaluation of robust gaussian process models for system identification |
author |
Mattos, César Lincoln Cavalcante |
author_facet |
Mattos, César Lincoln Cavalcante Santos, José Daniel de Alencar Barreto, Guilherme de Alencar |
author_role |
author |
author2 |
Santos, José Daniel de Alencar Barreto, Guilherme de Alencar |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Mattos, César Lincoln Cavalcante Santos, José Daniel de Alencar Barreto, Guilherme de Alencar |
dc.subject.por.fl_str_mv |
Robust system identification Gaussian process Approximate Bayesian inference |
topic |
Robust system identification Gaussian process Approximate Bayesian inference |
description |
System identification comprises a number of linear and non-linear tools for black-box modeling of dynamical systems, with applications in several areas of engineering, control, biology and economy. However, the usual Gaussian noise assumption is not always satisfied, specially if data is corrupted by impulsive noise or outliers. Bearing this in mind, the present paper aims at evaluating how Gaussian Process (GP) models perform in system identification tasks in the presence of outliers. More specifically, we compare the performances of two existing robust GP-based regression models in experiments involving five bench-marking datasets with controlled outlier inclusion. The results indicate that, although still sensitive in some degree to the presence of outliers, the robust models are indeed able to achieve lower prediction errors in corrupted scenarios when compared to conventional GP-based approach. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015 2023-02-09T16:11:26Z 2023-02-09T16:11:26Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
MATTOS, C. L. C.; SANTOS, J. D. A.; BARRETO, G. A. An empirical evaluation of robust gaussian process models for system identification. In: INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING, 16., 2015, Breslávia. Anais... Breslávia, 2015. p. 1-9. http://www.repositorio.ufc.br/handle/riufc/70692 |
identifier_str_mv |
MATTOS, C. L. C.; SANTOS, J. D. A.; BARRETO, G. A. An empirical evaluation of robust gaussian process models for system identification. In: INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING, 16., 2015, Breslávia. Anais... Breslávia, 2015. p. 1-9. |
url |
http://www.repositorio.ufc.br/handle/riufc/70692 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
International Conference on Intelligent Data Engineering and Automated Learning |
publisher.none.fl_str_mv |
International Conference on Intelligent Data Engineering and Automated Learning |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813029046381969408 |