Two-Dimensional Error Correction Code Proposals Targeting Space Application Memory Requirements

Detalhes bibliográficos
Autor(a) principal: Freitas, David Ciarlini Chagas
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/63262
Resumo: The integrated circuit shrinkage increases the probability and the number of errors in memories due to the increase in the sensitivity to radiation. Critical memory systems employ Error Correction Codes (ECC) to mitigate these failures. Nowadays, one-dimensional ECCs fail to achieve the effectiveness needed to address the increasing number of bit flips caused by a single radiation event. Consequently, n-dimensional ECCs have been proposed to provide higher error detection and correction power. These complex ECCs built for use in critical applications increase error correction and detection capacity but implying higher redundancy, area usage, energy consumption, and critical path delay. We focus on two-dimensional ECCs, also called product codes, designed to protect memories used in space applications. It is not yet clear how the structure of a two-dimensional code and its decoding algorithm influence the correction rate and its associated cost. Therefore, this thesis aims to develop three new approaches and new decoding techniques, always focusing on the maximum correction capability of this class of ECCs with the lowest possible cost of hardware implementation. The first proposal is the Product Code for Space Application (PCoSA), an ECC product based on Hamming and parity in both rows and columns for use in memory with space-application reliability requirements. The potentialities of PCoSA were evaluated by injecting (i) thirty-six predefined error patterns and (ii) all possible combinations of up to seven bitflips. This thesis also introduces the Optimized Product Code for Space Application (OPCoSA), an ECC that optimizes its original version PCoSA, reducing 16- redundancy bits and keeping high error correction capacity. This optimized ECC was evaluated through tests with 36 specific error patterns, burst errors, and exhaustive analysis. Additionally, synthesis results in hardware, reliability, and redundancy to four other ECCs dedicated to the space application were evaluated. The last proposal is Line Product Code (LPC), that uses a Single Error Correction Algorithm (AlgSE) followed by a Double Error Correction Algorithm (AlgDE). Both algorithms explore the LPC characteristics to attain greater decoding efficiency. AlgSE is implemented with an iterative technique associated with a correction heuristic, while AlgDE is an innovative proposal that allows increasing the effectiveness of correction through the inference of errors. AlgDE allows to increase the efficiency of the LPC decoder significantly when used together with AlgSE. All performances are supported by numerical experiments
id UFC-7_b0e89529ec65b92e585425146c19a507
oai_identifier_str oai:repositorio.ufc.br:riufc/63262
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Two-Dimensional Error Correction Code Proposals Targeting Space Application Memory RequirementsError correction codeRadiation effectMemory reliabilityThe integrated circuit shrinkage increases the probability and the number of errors in memories due to the increase in the sensitivity to radiation. Critical memory systems employ Error Correction Codes (ECC) to mitigate these failures. Nowadays, one-dimensional ECCs fail to achieve the effectiveness needed to address the increasing number of bit flips caused by a single radiation event. Consequently, n-dimensional ECCs have been proposed to provide higher error detection and correction power. These complex ECCs built for use in critical applications increase error correction and detection capacity but implying higher redundancy, area usage, energy consumption, and critical path delay. We focus on two-dimensional ECCs, also called product codes, designed to protect memories used in space applications. It is not yet clear how the structure of a two-dimensional code and its decoding algorithm influence the correction rate and its associated cost. Therefore, this thesis aims to develop three new approaches and new decoding techniques, always focusing on the maximum correction capability of this class of ECCs with the lowest possible cost of hardware implementation. The first proposal is the Product Code for Space Application (PCoSA), an ECC product based on Hamming and parity in both rows and columns for use in memory with space-application reliability requirements. The potentialities of PCoSA were evaluated by injecting (i) thirty-six predefined error patterns and (ii) all possible combinations of up to seven bitflips. This thesis also introduces the Optimized Product Code for Space Application (OPCoSA), an ECC that optimizes its original version PCoSA, reducing 16- redundancy bits and keeping high error correction capacity. This optimized ECC was evaluated through tests with 36 specific error patterns, burst errors, and exhaustive analysis. Additionally, synthesis results in hardware, reliability, and redundancy to four other ECCs dedicated to the space application were evaluated. The last proposal is Line Product Code (LPC), that uses a Single Error Correction Algorithm (AlgSE) followed by a Double Error Correction Algorithm (AlgDE). Both algorithms explore the LPC characteristics to attain greater decoding efficiency. AlgSE is implemented with an iterative technique associated with a correction heuristic, while AlgDE is an innovative proposal that allows increasing the effectiveness of correction through the inference of errors. AlgDE allows to increase the efficiency of the LPC decoder significantly when used together with AlgSE. All performances are supported by numerical experimentsMota, João César MouraSilveira, Jarbas Aryel Nunes daFreitas, David Ciarlini Chagas2021-12-30T11:11:45Z2021-12-30T11:11:45Z2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfFREITAS, David Ciarlini Chagas. Two-dimensional error correction code proposals targeting space application memory requirements. 2021. 135 f. Tese (Doutorado em Engenharia de Teleinformática) - Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia de Teleinformática, Fortaleza, 2021.http://www.repositorio.ufc.br/handle/riufc/63262engreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2022-06-01T13:37:20Zoai:repositorio.ufc.br:riufc/63262Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:21:51.168063Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv Two-Dimensional Error Correction Code Proposals Targeting Space Application Memory Requirements
title Two-Dimensional Error Correction Code Proposals Targeting Space Application Memory Requirements
spellingShingle Two-Dimensional Error Correction Code Proposals Targeting Space Application Memory Requirements
Freitas, David Ciarlini Chagas
Error correction code
Radiation effect
Memory reliability
title_short Two-Dimensional Error Correction Code Proposals Targeting Space Application Memory Requirements
title_full Two-Dimensional Error Correction Code Proposals Targeting Space Application Memory Requirements
title_fullStr Two-Dimensional Error Correction Code Proposals Targeting Space Application Memory Requirements
title_full_unstemmed Two-Dimensional Error Correction Code Proposals Targeting Space Application Memory Requirements
title_sort Two-Dimensional Error Correction Code Proposals Targeting Space Application Memory Requirements
author Freitas, David Ciarlini Chagas
author_facet Freitas, David Ciarlini Chagas
author_role author
dc.contributor.none.fl_str_mv Mota, João César Moura
Silveira, Jarbas Aryel Nunes da
dc.contributor.author.fl_str_mv Freitas, David Ciarlini Chagas
dc.subject.por.fl_str_mv Error correction code
Radiation effect
Memory reliability
topic Error correction code
Radiation effect
Memory reliability
description The integrated circuit shrinkage increases the probability and the number of errors in memories due to the increase in the sensitivity to radiation. Critical memory systems employ Error Correction Codes (ECC) to mitigate these failures. Nowadays, one-dimensional ECCs fail to achieve the effectiveness needed to address the increasing number of bit flips caused by a single radiation event. Consequently, n-dimensional ECCs have been proposed to provide higher error detection and correction power. These complex ECCs built for use in critical applications increase error correction and detection capacity but implying higher redundancy, area usage, energy consumption, and critical path delay. We focus on two-dimensional ECCs, also called product codes, designed to protect memories used in space applications. It is not yet clear how the structure of a two-dimensional code and its decoding algorithm influence the correction rate and its associated cost. Therefore, this thesis aims to develop three new approaches and new decoding techniques, always focusing on the maximum correction capability of this class of ECCs with the lowest possible cost of hardware implementation. The first proposal is the Product Code for Space Application (PCoSA), an ECC product based on Hamming and parity in both rows and columns for use in memory with space-application reliability requirements. The potentialities of PCoSA were evaluated by injecting (i) thirty-six predefined error patterns and (ii) all possible combinations of up to seven bitflips. This thesis also introduces the Optimized Product Code for Space Application (OPCoSA), an ECC that optimizes its original version PCoSA, reducing 16- redundancy bits and keeping high error correction capacity. This optimized ECC was evaluated through tests with 36 specific error patterns, burst errors, and exhaustive analysis. Additionally, synthesis results in hardware, reliability, and redundancy to four other ECCs dedicated to the space application were evaluated. The last proposal is Line Product Code (LPC), that uses a Single Error Correction Algorithm (AlgSE) followed by a Double Error Correction Algorithm (AlgDE). Both algorithms explore the LPC characteristics to attain greater decoding efficiency. AlgSE is implemented with an iterative technique associated with a correction heuristic, while AlgDE is an innovative proposal that allows increasing the effectiveness of correction through the inference of errors. AlgDE allows to increase the efficiency of the LPC decoder significantly when used together with AlgSE. All performances are supported by numerical experiments
publishDate 2021
dc.date.none.fl_str_mv 2021-12-30T11:11:45Z
2021-12-30T11:11:45Z
2021
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv FREITAS, David Ciarlini Chagas. Two-dimensional error correction code proposals targeting space application memory requirements. 2021. 135 f. Tese (Doutorado em Engenharia de Teleinformática) - Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia de Teleinformática, Fortaleza, 2021.
http://www.repositorio.ufc.br/handle/riufc/63262
identifier_str_mv FREITAS, David Ciarlini Chagas. Two-dimensional error correction code proposals targeting space application memory requirements. 2021. 135 f. Tese (Doutorado em Engenharia de Teleinformática) - Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia de Teleinformática, Fortaleza, 2021.
url http://www.repositorio.ufc.br/handle/riufc/63262
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1813028772480286720