A machine learning approach to identify and prioritize college students at risk of dropping out

Detalhes bibliográficos
Autor(a) principal: Barbosa, Artur Mesquita
Data de Publicação: 2017
Outros Autores: Santos, Emanuele, Gomes, João Paulo P.
Tipo de documento: Artigo de conferência
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/36899
Resumo: In this paper, we present a student dropout prediction strategy based on the classification with reject option paradigm. In such strategy, our method classifies students into dropout prone or non-dropout prone classes and may also reject classifying students when the algorithm does not provide a reliable prediction. The rejected students are the ones that could be classified into either class, and so are probably the ones with more chances of success when subjected to personalized intervention activities. In the proposed method, the reject zone can be adjusted so that the number of rejected students can meet the available workforce of the educational institution. Our method was tested on a dataset collected from 892 undergraduate students from 2005 to 2016.
id UFC-7_b3890aef09580476adafce57f3e5ba8e
oai_identifier_str oai:repositorio.ufc.br:riufc/36899
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling A machine learning approach to identify and prioritize college students at risk of dropping outClassification with reject option paradigmIntervention activitiesUndergraduate studentsIn this paper, we present a student dropout prediction strategy based on the classification with reject option paradigm. In such strategy, our method classifies students into dropout prone or non-dropout prone classes and may also reject classifying students when the algorithm does not provide a reliable prediction. The rejected students are the ones that could be classified into either class, and so are probably the ones with more chances of success when subjected to personalized intervention activities. In the proposed method, the reject zone can be adjusted so that the number of rejected students can meet the available workforce of the educational institution. Our method was tested on a dataset collected from 892 undergraduate students from 2005 to 2016.Sociedade Brasileira de Computação2018-11-06T15:58:14Z2018-11-06T15:58:14Z2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectapplication/pdfBARBOSA, Artur Mesquita; SANTOS, Emanuele; GOMES, João Paulo P. A machine learning approach to identify and prioritize college students at risk of dropping out. . In: CONGRESSO BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO, 6., SIMPÓSIO BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO, 28., Recife, 30 out./02 nov. 2017. Anais... Recife: Sociedade Brasileira de Computação, 2018. p. 1497-1506.2316-6533http://www.repositorio.ufc.br/handle/riufc/36899Barbosa, Artur MesquitaSantos, EmanueleGomes, João Paulo P.porreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2020-08-31T18:14:13Zoai:repositorio.ufc.br:riufc/36899Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:23:41.924471Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv A machine learning approach to identify and prioritize college students at risk of dropping out
title A machine learning approach to identify and prioritize college students at risk of dropping out
spellingShingle A machine learning approach to identify and prioritize college students at risk of dropping out
Barbosa, Artur Mesquita
Classification with reject option paradigm
Intervention activities
Undergraduate students
title_short A machine learning approach to identify and prioritize college students at risk of dropping out
title_full A machine learning approach to identify and prioritize college students at risk of dropping out
title_fullStr A machine learning approach to identify and prioritize college students at risk of dropping out
title_full_unstemmed A machine learning approach to identify and prioritize college students at risk of dropping out
title_sort A machine learning approach to identify and prioritize college students at risk of dropping out
author Barbosa, Artur Mesquita
author_facet Barbosa, Artur Mesquita
Santos, Emanuele
Gomes, João Paulo P.
author_role author
author2 Santos, Emanuele
Gomes, João Paulo P.
author2_role author
author
dc.contributor.author.fl_str_mv Barbosa, Artur Mesquita
Santos, Emanuele
Gomes, João Paulo P.
dc.subject.por.fl_str_mv Classification with reject option paradigm
Intervention activities
Undergraduate students
topic Classification with reject option paradigm
Intervention activities
Undergraduate students
description In this paper, we present a student dropout prediction strategy based on the classification with reject option paradigm. In such strategy, our method classifies students into dropout prone or non-dropout prone classes and may also reject classifying students when the algorithm does not provide a reliable prediction. The rejected students are the ones that could be classified into either class, and so are probably the ones with more chances of success when subjected to personalized intervention activities. In the proposed method, the reject zone can be adjusted so that the number of rejected students can meet the available workforce of the educational institution. Our method was tested on a dataset collected from 892 undergraduate students from 2005 to 2016.
publishDate 2017
dc.date.none.fl_str_mv 2017
2018-11-06T15:58:14Z
2018-11-06T15:58:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv BARBOSA, Artur Mesquita; SANTOS, Emanuele; GOMES, João Paulo P. A machine learning approach to identify and prioritize college students at risk of dropping out. . In: CONGRESSO BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO, 6., SIMPÓSIO BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO, 28., Recife, 30 out./02 nov. 2017. Anais... Recife: Sociedade Brasileira de Computação, 2018. p. 1497-1506.
2316-6533
http://www.repositorio.ufc.br/handle/riufc/36899
identifier_str_mv BARBOSA, Artur Mesquita; SANTOS, Emanuele; GOMES, João Paulo P. A machine learning approach to identify and prioritize college students at risk of dropping out. . In: CONGRESSO BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO, 6., SIMPÓSIO BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO, 28., Recife, 30 out./02 nov. 2017. Anais... Recife: Sociedade Brasileira de Computação, 2018. p. 1497-1506.
2316-6533
url http://www.repositorio.ufc.br/handle/riufc/36899
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Sociedade Brasileira de Computação
publisher.none.fl_str_mv Sociedade Brasileira de Computação
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1813028785415520256