A machine learning approach to identify and prioritize college students at risk of dropping out
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo de conferência |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/36899 |
Resumo: | In this paper, we present a student dropout prediction strategy based on the classification with reject option paradigm. In such strategy, our method classifies students into dropout prone or non-dropout prone classes and may also reject classifying students when the algorithm does not provide a reliable prediction. The rejected students are the ones that could be classified into either class, and so are probably the ones with more chances of success when subjected to personalized intervention activities. In the proposed method, the reject zone can be adjusted so that the number of rejected students can meet the available workforce of the educational institution. Our method was tested on a dataset collected from 892 undergraduate students from 2005 to 2016. |
id |
UFC-7_b3890aef09580476adafce57f3e5ba8e |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/36899 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
A machine learning approach to identify and prioritize college students at risk of dropping outClassification with reject option paradigmIntervention activitiesUndergraduate studentsIn this paper, we present a student dropout prediction strategy based on the classification with reject option paradigm. In such strategy, our method classifies students into dropout prone or non-dropout prone classes and may also reject classifying students when the algorithm does not provide a reliable prediction. The rejected students are the ones that could be classified into either class, and so are probably the ones with more chances of success when subjected to personalized intervention activities. In the proposed method, the reject zone can be adjusted so that the number of rejected students can meet the available workforce of the educational institution. Our method was tested on a dataset collected from 892 undergraduate students from 2005 to 2016.Sociedade Brasileira de Computação2018-11-06T15:58:14Z2018-11-06T15:58:14Z2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectapplication/pdfBARBOSA, Artur Mesquita; SANTOS, Emanuele; GOMES, João Paulo P. A machine learning approach to identify and prioritize college students at risk of dropping out. . In: CONGRESSO BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO, 6., SIMPÓSIO BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO, 28., Recife, 30 out./02 nov. 2017. Anais... Recife: Sociedade Brasileira de Computação, 2018. p. 1497-1506.2316-6533http://www.repositorio.ufc.br/handle/riufc/36899Barbosa, Artur MesquitaSantos, EmanueleGomes, João Paulo P.porreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2020-08-31T18:14:13Zoai:repositorio.ufc.br:riufc/36899Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:23:41.924471Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
A machine learning approach to identify and prioritize college students at risk of dropping out |
title |
A machine learning approach to identify and prioritize college students at risk of dropping out |
spellingShingle |
A machine learning approach to identify and prioritize college students at risk of dropping out Barbosa, Artur Mesquita Classification with reject option paradigm Intervention activities Undergraduate students |
title_short |
A machine learning approach to identify and prioritize college students at risk of dropping out |
title_full |
A machine learning approach to identify and prioritize college students at risk of dropping out |
title_fullStr |
A machine learning approach to identify and prioritize college students at risk of dropping out |
title_full_unstemmed |
A machine learning approach to identify and prioritize college students at risk of dropping out |
title_sort |
A machine learning approach to identify and prioritize college students at risk of dropping out |
author |
Barbosa, Artur Mesquita |
author_facet |
Barbosa, Artur Mesquita Santos, Emanuele Gomes, João Paulo P. |
author_role |
author |
author2 |
Santos, Emanuele Gomes, João Paulo P. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Barbosa, Artur Mesquita Santos, Emanuele Gomes, João Paulo P. |
dc.subject.por.fl_str_mv |
Classification with reject option paradigm Intervention activities Undergraduate students |
topic |
Classification with reject option paradigm Intervention activities Undergraduate students |
description |
In this paper, we present a student dropout prediction strategy based on the classification with reject option paradigm. In such strategy, our method classifies students into dropout prone or non-dropout prone classes and may also reject classifying students when the algorithm does not provide a reliable prediction. The rejected students are the ones that could be classified into either class, and so are probably the ones with more chances of success when subjected to personalized intervention activities. In the proposed method, the reject zone can be adjusted so that the number of rejected students can meet the available workforce of the educational institution. Our method was tested on a dataset collected from 892 undergraduate students from 2005 to 2016. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 2018-11-06T15:58:14Z 2018-11-06T15:58:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
BARBOSA, Artur Mesquita; SANTOS, Emanuele; GOMES, João Paulo P. A machine learning approach to identify and prioritize college students at risk of dropping out. . In: CONGRESSO BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO, 6., SIMPÓSIO BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO, 28., Recife, 30 out./02 nov. 2017. Anais... Recife: Sociedade Brasileira de Computação, 2018. p. 1497-1506. 2316-6533 http://www.repositorio.ufc.br/handle/riufc/36899 |
identifier_str_mv |
BARBOSA, Artur Mesquita; SANTOS, Emanuele; GOMES, João Paulo P. A machine learning approach to identify and prioritize college students at risk of dropping out. . In: CONGRESSO BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO, 6., SIMPÓSIO BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO, 28., Recife, 30 out./02 nov. 2017. Anais... Recife: Sociedade Brasileira de Computação, 2018. p. 1497-1506. 2316-6533 |
url |
http://www.repositorio.ufc.br/handle/riufc/36899 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Computação |
publisher.none.fl_str_mv |
Sociedade Brasileira de Computação |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813028785415520256 |