Optimization of steel catenary risers using bio-inspired algorithms

Detalhes bibliográficos
Autor(a) principal: Tornisiello, Ligia
Data de Publicação: 2016
Outros Autores: Parente Junior, Evandro
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: https://doi.org/10.26512/ripe.v2i25.20859
http://www.repositorio.ufc.br/handle/riufc/62246
Resumo: The design of a riser is very time consuming, since a large number of parameters (e.g.: thickness, top angle, and material properties) are involved and tight safety requirements must be met. This leads to the study of tools, such as optimization algorithms, that can speed up the process of elaborating a feasible riser project for certain conditions. Considering that some of the parameters in the design of a riser can assume a discrete set of values, the utilization of mathematical programming algorithms becomes unfeasible. It is then necessary to use metaheuristic algorithms, such as Genetic Algorithm and Particle Swarm Optimization.In this context, this paper presents a study on the application of bio-inspired algorithms,including GA and PSO, to the design optimization of steel catenary risers. The problem consists of finding the riser material and wall thickness that minimize the cost to fabricate a viable riser, in conformance with the requirements of technical standards. The main hypotheses that were adopted are presented, along with the description of the methodology employed. The results show that a significant reduction in riser cost is achieved when the riser is divided in multiple segments with different thickness and material. The efficiency of the utilized algorithms in finding an optimum riser design for the specified conditions is onfirmed by the obtained numerical results.
id UFC-7_b80e8ff266c5579bf3f65eaf5d36dc2a
oai_identifier_str oai:repositorio.ufc.br:riufc/62246
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Optimization of steel catenary risers using bio-inspired algorithmsBio - Inspired algorithmsOptimizationRisersThe design of a riser is very time consuming, since a large number of parameters (e.g.: thickness, top angle, and material properties) are involved and tight safety requirements must be met. This leads to the study of tools, such as optimization algorithms, that can speed up the process of elaborating a feasible riser project for certain conditions. Considering that some of the parameters in the design of a riser can assume a discrete set of values, the utilization of mathematical programming algorithms becomes unfeasible. It is then necessary to use metaheuristic algorithms, such as Genetic Algorithm and Particle Swarm Optimization.In this context, this paper presents a study on the application of bio-inspired algorithms,including GA and PSO, to the design optimization of steel catenary risers. The problem consists of finding the riser material and wall thickness that minimize the cost to fabricate a viable riser, in conformance with the requirements of technical standards. The main hypotheses that were adopted are presented, along with the description of the methodology employed. The results show that a significant reduction in riser cost is achieved when the riser is divided in multiple segments with different thickness and material. The efficiency of the utilized algorithms in finding an optimum riser design for the specified conditions is onfirmed by the obtained numerical results.Revista Interdisciplinar de Pesquisa em Engenharia (RIPE) - https://periodicos.unb.br/index.php/ripe/index2021-11-19T12:20:26Z2021-11-19T12:20:26Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfTORNISIELLO, Ligia; PARENTE JUNIOR, Evandro. Optimization of steel catenary risers using bio-inspired algorithms. Revista Interdisciplinar de Pesquisa em Engenharia, v. 2, n. 25, p.176–180, 2016. Publicado: 2017-02-08. Trabalho apresentado no XXXVII Ibero-Latin American Congress on Computational Methods in Engineering - CILAMCE, 6 to 9 nov. 2016, Brasília, Brazil.2447-6102 onlinehttps://doi.org/10.26512/ripe.v2i25.20859http://www.repositorio.ufc.br/handle/riufc/62246Tornisiello, LigiaParente Junior, Evandroinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFC2023-12-06T14:07:27Zoai:repositorio.ufc.br:riufc/62246Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:20:34.760066Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv Optimization of steel catenary risers using bio-inspired algorithms
title Optimization of steel catenary risers using bio-inspired algorithms
spellingShingle Optimization of steel catenary risers using bio-inspired algorithms
Tornisiello, Ligia
Bio - Inspired algorithms
Optimization
Risers
title_short Optimization of steel catenary risers using bio-inspired algorithms
title_full Optimization of steel catenary risers using bio-inspired algorithms
title_fullStr Optimization of steel catenary risers using bio-inspired algorithms
title_full_unstemmed Optimization of steel catenary risers using bio-inspired algorithms
title_sort Optimization of steel catenary risers using bio-inspired algorithms
author Tornisiello, Ligia
author_facet Tornisiello, Ligia
Parente Junior, Evandro
author_role author
author2 Parente Junior, Evandro
author2_role author
dc.contributor.author.fl_str_mv Tornisiello, Ligia
Parente Junior, Evandro
dc.subject.por.fl_str_mv Bio - Inspired algorithms
Optimization
Risers
topic Bio - Inspired algorithms
Optimization
Risers
description The design of a riser is very time consuming, since a large number of parameters (e.g.: thickness, top angle, and material properties) are involved and tight safety requirements must be met. This leads to the study of tools, such as optimization algorithms, that can speed up the process of elaborating a feasible riser project for certain conditions. Considering that some of the parameters in the design of a riser can assume a discrete set of values, the utilization of mathematical programming algorithms becomes unfeasible. It is then necessary to use metaheuristic algorithms, such as Genetic Algorithm and Particle Swarm Optimization.In this context, this paper presents a study on the application of bio-inspired algorithms,including GA and PSO, to the design optimization of steel catenary risers. The problem consists of finding the riser material and wall thickness that minimize the cost to fabricate a viable riser, in conformance with the requirements of technical standards. The main hypotheses that were adopted are presented, along with the description of the methodology employed. The results show that a significant reduction in riser cost is achieved when the riser is divided in multiple segments with different thickness and material. The efficiency of the utilized algorithms in finding an optimum riser design for the specified conditions is onfirmed by the obtained numerical results.
publishDate 2016
dc.date.none.fl_str_mv 2016
2021-11-19T12:20:26Z
2021-11-19T12:20:26Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv TORNISIELLO, Ligia; PARENTE JUNIOR, Evandro. Optimization of steel catenary risers using bio-inspired algorithms. Revista Interdisciplinar de Pesquisa em Engenharia, v. 2, n. 25, p.176–180, 2016. Publicado: 2017-02-08. Trabalho apresentado no XXXVII Ibero-Latin American Congress on Computational Methods in Engineering - CILAMCE, 6 to 9 nov. 2016, Brasília, Brazil.
2447-6102 online
https://doi.org/10.26512/ripe.v2i25.20859
http://www.repositorio.ufc.br/handle/riufc/62246
identifier_str_mv TORNISIELLO, Ligia; PARENTE JUNIOR, Evandro. Optimization of steel catenary risers using bio-inspired algorithms. Revista Interdisciplinar de Pesquisa em Engenharia, v. 2, n. 25, p.176–180, 2016. Publicado: 2017-02-08. Trabalho apresentado no XXXVII Ibero-Latin American Congress on Computational Methods in Engineering - CILAMCE, 6 to 9 nov. 2016, Brasília, Brazil.
2447-6102 online
url https://doi.org/10.26512/ripe.v2i25.20859
http://www.repositorio.ufc.br/handle/riufc/62246
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Revista Interdisciplinar de Pesquisa em Engenharia (RIPE) - https://periodicos.unb.br/index.php/ripe/index
publisher.none.fl_str_mv Revista Interdisciplinar de Pesquisa em Engenharia (RIPE) - https://periodicos.unb.br/index.php/ripe/index
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1813028718075969536