Análise termomecânica de materiais com gradação funcional
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/56308 |
Resumo: | Functionally Graded Materials (FGM) were initially developed to solve problems related to thermal barriers for aerospace structures and fusion reactors and are currently used in structures subjected to high temperatures and thermal gradients. The main characteristic of this class of material is the continuous and smooth variation of its components along a given direction which avoids major discontinuities. Other advantages are the better distribution of residual stresses and greater fracture toughness. This work deals with thermomechanical analysis of structures with functional gradation. Aspects, such as, temperature distribution, stress distribution, critical load and post-critical path of functionally graded plates and shells were evaluated. Heat transfer problems were solved considering a steady state regime. From the thermomechanical standpoint, the structures were evaluated according to the partially coupled methodology. In this approach the thermal analysis is carried out independently from mechanical terms and then the mechanical analysis follows suit, considering the temperature distribution from the thermal analysis. The modeling of structures with functional gradation was performed using the Finite Element Method through the ABAQUS software. For this purpose, user subroutines were developed to account for the gradation in the properties, since this type of material is not available in the software library. Solid elements were employed for both thermal and mechanical analysis. The verification of the adopted methodology was carried out by comparison with examples from the literature. An excellent convergence was found for the aspects evaluated in this work, such as, temperature distribution, stress distribution, critical load, and non-linear equilibrium path. The results showed that the effective material properties are highly dependent on the materials used and homogenization models adopted. Besides that, simplified solutions for obtaining temperature distribution should be used advisedly to avoid errors in the final solution. Regarding stability aspects, it was observed that the boundary conditions, variation of the volume fraction and temperature distribution have a great influence on the thermal buckling and post-buckling behavior of functionally graded plates and shells. |
id |
UFC-7_c1089903bbeb4f66e15f2d6d6b4255e1 |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/56308 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
Análise termomecânica de materiais com gradação funcionalMateriais com gradação funcionalCarregamento termomecânicoMétodo dos elementos finitosEstabilidadeFunctionally Graded Materials (FGM) were initially developed to solve problems related to thermal barriers for aerospace structures and fusion reactors and are currently used in structures subjected to high temperatures and thermal gradients. The main characteristic of this class of material is the continuous and smooth variation of its components along a given direction which avoids major discontinuities. Other advantages are the better distribution of residual stresses and greater fracture toughness. This work deals with thermomechanical analysis of structures with functional gradation. Aspects, such as, temperature distribution, stress distribution, critical load and post-critical path of functionally graded plates and shells were evaluated. Heat transfer problems were solved considering a steady state regime. From the thermomechanical standpoint, the structures were evaluated according to the partially coupled methodology. In this approach the thermal analysis is carried out independently from mechanical terms and then the mechanical analysis follows suit, considering the temperature distribution from the thermal analysis. The modeling of structures with functional gradation was performed using the Finite Element Method through the ABAQUS software. For this purpose, user subroutines were developed to account for the gradation in the properties, since this type of material is not available in the software library. Solid elements were employed for both thermal and mechanical analysis. The verification of the adopted methodology was carried out by comparison with examples from the literature. An excellent convergence was found for the aspects evaluated in this work, such as, temperature distribution, stress distribution, critical load, and non-linear equilibrium path. The results showed that the effective material properties are highly dependent on the materials used and homogenization models adopted. Besides that, simplified solutions for obtaining temperature distribution should be used advisedly to avoid errors in the final solution. Regarding stability aspects, it was observed that the boundary conditions, variation of the volume fraction and temperature distribution have a great influence on the thermal buckling and post-buckling behavior of functionally graded plates and shells.Os Materiais com Gradação Funcional (MGF) (Functionally Graded Materials – FGM) foram propostos inicialmente para problemas envolvendo barreiras térmicas em estruturas aeroespaciais e reatores de fusão, sendo atualmente utilizados em diversas estruturas submetidas a altas temperaturas e gradientes térmicos. Sua principal característica é a variação contínua e suave de seus componentes ao longo de uma direção preferencial, evitando descontinuidades expressivas. Outras vantagens desses materiais são a melhor distribuição de tensões residuais e maior tenacidade à fratura. Este trabalho trata da análise termomecânica de estruturas com gradação funcional. Aspectos como a distribuição de temperatura, distribuição de tensões, carga crítica e caminho pós-crítico de placas e cascas com gradação funcional foram estudados. O problema térmico foi resolvido em regime permanente. No aspecto termomecânico, as estruturas foram analisadas considerando a metodologia parcialmente acoplada, onde realiza-se a análise térmica com independência em relação a termos mecânicos e em seguida realiza-se análise mecânica considerando a distribuição de temperatura obtida na análise térmica. A modelagem de estruturas com gradação funcional foi realizada utilizando o Método dos Elementos Finitos por meio do programa ABAQUS. Para este fim, foram desenvolvidas sub-rotinas do usuário para consideração de materiais com gradação funcional, já que este não são originalmente disponíveis na biblioteca do software. A metodologia utilizada é baseada no uso de elementos sólidos tanto para análise térmica quanto mecânica. A verificação desta metodologia foi realizada por meio de comparação com exemplos da literatura, obtendo-se excelente concordância para os aspectos avaliados: distribuição de temperatura, distribuição de tensões, temperatura crítica e caminho não linear de equilíbrio. Os resultados obtidos mostram que as propriedades efetivas são altamente dependentes dos materiais utilizados e dos modelos de homogeneização adotados. Além disso, soluções simplificadas para a obtenção da distribuição de temperatura devem ser utilizadas de forma cuidadosa de forma a não introduzir erros na solução. No que diz respeito à estabilidade, verificou-se que as condições de contorno, variação da fração de volume e distribuição de temperatura têm grande influência sobre a flambagem térmica e comportamento pós-crítico de placas e cascas com gradação funcional.Parente Junior, EvandroMedeiros Júnior, Marcelo SilvaSilva, Diogo Raniere Ramos e2021-02-03T12:23:14Z2021-02-03T12:23:14Z2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfSILVA, Diogo Raniere Ramos e. Análise termomecânica de materiais com gradação funcional. 2020. 105f. Dissertação (Mestrado em Engenharia Civil: Estruturas e Construção Civil) - Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia Civil, Fortaleza(CE), 2020.http://www.repositorio.ufc.br/handle/riufc/56308porreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2022-06-07T12:17:21Zoai:repositorio.ufc.br:riufc/56308Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:21:25.502560Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Análise termomecânica de materiais com gradação funcional |
title |
Análise termomecânica de materiais com gradação funcional |
spellingShingle |
Análise termomecânica de materiais com gradação funcional Silva, Diogo Raniere Ramos e Materiais com gradação funcional Carregamento termomecânico Método dos elementos finitos Estabilidade |
title_short |
Análise termomecânica de materiais com gradação funcional |
title_full |
Análise termomecânica de materiais com gradação funcional |
title_fullStr |
Análise termomecânica de materiais com gradação funcional |
title_full_unstemmed |
Análise termomecânica de materiais com gradação funcional |
title_sort |
Análise termomecânica de materiais com gradação funcional |
author |
Silva, Diogo Raniere Ramos e |
author_facet |
Silva, Diogo Raniere Ramos e |
author_role |
author |
dc.contributor.none.fl_str_mv |
Parente Junior, Evandro Medeiros Júnior, Marcelo Silva |
dc.contributor.author.fl_str_mv |
Silva, Diogo Raniere Ramos e |
dc.subject.por.fl_str_mv |
Materiais com gradação funcional Carregamento termomecânico Método dos elementos finitos Estabilidade |
topic |
Materiais com gradação funcional Carregamento termomecânico Método dos elementos finitos Estabilidade |
description |
Functionally Graded Materials (FGM) were initially developed to solve problems related to thermal barriers for aerospace structures and fusion reactors and are currently used in structures subjected to high temperatures and thermal gradients. The main characteristic of this class of material is the continuous and smooth variation of its components along a given direction which avoids major discontinuities. Other advantages are the better distribution of residual stresses and greater fracture toughness. This work deals with thermomechanical analysis of structures with functional gradation. Aspects, such as, temperature distribution, stress distribution, critical load and post-critical path of functionally graded plates and shells were evaluated. Heat transfer problems were solved considering a steady state regime. From the thermomechanical standpoint, the structures were evaluated according to the partially coupled methodology. In this approach the thermal analysis is carried out independently from mechanical terms and then the mechanical analysis follows suit, considering the temperature distribution from the thermal analysis. The modeling of structures with functional gradation was performed using the Finite Element Method through the ABAQUS software. For this purpose, user subroutines were developed to account for the gradation in the properties, since this type of material is not available in the software library. Solid elements were employed for both thermal and mechanical analysis. The verification of the adopted methodology was carried out by comparison with examples from the literature. An excellent convergence was found for the aspects evaluated in this work, such as, temperature distribution, stress distribution, critical load, and non-linear equilibrium path. The results showed that the effective material properties are highly dependent on the materials used and homogenization models adopted. Besides that, simplified solutions for obtaining temperature distribution should be used advisedly to avoid errors in the final solution. Regarding stability aspects, it was observed that the boundary conditions, variation of the volume fraction and temperature distribution have a great influence on the thermal buckling and post-buckling behavior of functionally graded plates and shells. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 2021-02-03T12:23:14Z 2021-02-03T12:23:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
SILVA, Diogo Raniere Ramos e. Análise termomecânica de materiais com gradação funcional. 2020. 105f. Dissertação (Mestrado em Engenharia Civil: Estruturas e Construção Civil) - Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia Civil, Fortaleza(CE), 2020. http://www.repositorio.ufc.br/handle/riufc/56308 |
identifier_str_mv |
SILVA, Diogo Raniere Ramos e. Análise termomecânica de materiais com gradação funcional. 2020. 105f. Dissertação (Mestrado em Engenharia Civil: Estruturas e Construção Civil) - Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia Civil, Fortaleza(CE), 2020. |
url |
http://www.repositorio.ufc.br/handle/riufc/56308 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813028718088552448 |