Generalized maximum likelihood Pareto-Poisson estimators for partial duration series

Detalhes bibliográficos
Autor(a) principal: Martins, Eduardo Sávio Passos Rodrigues
Data de Publicação: 2001
Outros Autores: Stedinger, Jery Russell
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/59409
Resumo: his paper considers use of the generalized Pareto (GP) distribution with a Poisson model for arrivals to describe peaks over a threshold. This yields a three- parameter generalized extreme value (GEV) distribution for the annual maximum series. Maximum likelihood estimates of the GP shape parameter • can result in absurd estimates in small samples. These problems are resolved by addition of a prior distribution on • yielding a generalized maximum likelihood estimator. Results show that a three- parameter partial duration series (PDS) analysis yields quantile estimators with the same precision as an annual maximum series (AMS) analysis when the generalized maximum likelihood (GML) GP and GEV estimators are adopted. For • -< 0 the GML quantile estimators with both PDS and AMS have the best performance among the quantile estimators examined (moments, L moments, and GML). The precision of flood quantiles derived from a PDS analysis is insensitive to the arrival rate X, so that a year of PDS data is generally worth about as much as a year of AMS data when estimating the 100-year flood.
id UFC-7_c5031f26c932b0d42d10d651175543e2
oai_identifier_str oai:repositorio.ufc.br:riufc/59409
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Generalized maximum likelihood Pareto-Poisson estimators for partial duration seriesGeneralized maximum likelihood Pareto-Poisson estimators for partial duration seriesInundaçõesChuvasParametroshis paper considers use of the generalized Pareto (GP) distribution with a Poisson model for arrivals to describe peaks over a threshold. This yields a three- parameter generalized extreme value (GEV) distribution for the annual maximum series. Maximum likelihood estimates of the GP shape parameter • can result in absurd estimates in small samples. These problems are resolved by addition of a prior distribution on • yielding a generalized maximum likelihood estimator. Results show that a three- parameter partial duration series (PDS) analysis yields quantile estimators with the same precision as an annual maximum series (AMS) analysis when the generalized maximum likelihood (GML) GP and GEV estimators are adopted. For • -< 0 the GML quantile estimators with both PDS and AMS have the best performance among the quantile estimators examined (moments, L moments, and GML). The precision of flood quantiles derived from a PDS analysis is insensitive to the arrival rate X, so that a year of PDS data is generally worth about as much as a year of AMS data when estimating the 100-year flood.Water Resources Research2021-07-09T11:08:25Z2021-07-09T11:08:25Z2001info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfMARTINS, Eduardo Sávio Passos Rodrigues.; STEDINGER, Jery Russell. Generalized maximum likelihood Pareto-Poisson estimators for partial duration series. Water Resources Research, United States, v. 37, n.10, p. 2551-2557, 2001.1944-7973http://www.repositorio.ufc.br/handle/riufc/59409Martins, Eduardo Sávio Passos RodriguesStedinger, Jery Russellengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2022-11-30T18:43:19Zoai:repositorio.ufc.br:riufc/59409Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:49:47.358278Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv Generalized maximum likelihood Pareto-Poisson estimators for partial duration series
Generalized maximum likelihood Pareto-Poisson estimators for partial duration series
title Generalized maximum likelihood Pareto-Poisson estimators for partial duration series
spellingShingle Generalized maximum likelihood Pareto-Poisson estimators for partial duration series
Martins, Eduardo Sávio Passos Rodrigues
Inundações
Chuvas
Parametros
title_short Generalized maximum likelihood Pareto-Poisson estimators for partial duration series
title_full Generalized maximum likelihood Pareto-Poisson estimators for partial duration series
title_fullStr Generalized maximum likelihood Pareto-Poisson estimators for partial duration series
title_full_unstemmed Generalized maximum likelihood Pareto-Poisson estimators for partial duration series
title_sort Generalized maximum likelihood Pareto-Poisson estimators for partial duration series
author Martins, Eduardo Sávio Passos Rodrigues
author_facet Martins, Eduardo Sávio Passos Rodrigues
Stedinger, Jery Russell
author_role author
author2 Stedinger, Jery Russell
author2_role author
dc.contributor.author.fl_str_mv Martins, Eduardo Sávio Passos Rodrigues
Stedinger, Jery Russell
dc.subject.por.fl_str_mv Inundações
Chuvas
Parametros
topic Inundações
Chuvas
Parametros
description his paper considers use of the generalized Pareto (GP) distribution with a Poisson model for arrivals to describe peaks over a threshold. This yields a three- parameter generalized extreme value (GEV) distribution for the annual maximum series. Maximum likelihood estimates of the GP shape parameter • can result in absurd estimates in small samples. These problems are resolved by addition of a prior distribution on • yielding a generalized maximum likelihood estimator. Results show that a three- parameter partial duration series (PDS) analysis yields quantile estimators with the same precision as an annual maximum series (AMS) analysis when the generalized maximum likelihood (GML) GP and GEV estimators are adopted. For • -< 0 the GML quantile estimators with both PDS and AMS have the best performance among the quantile estimators examined (moments, L moments, and GML). The precision of flood quantiles derived from a PDS analysis is insensitive to the arrival rate X, so that a year of PDS data is generally worth about as much as a year of AMS data when estimating the 100-year flood.
publishDate 2001
dc.date.none.fl_str_mv 2001
2021-07-09T11:08:25Z
2021-07-09T11:08:25Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv MARTINS, Eduardo Sávio Passos Rodrigues.; STEDINGER, Jery Russell. Generalized maximum likelihood Pareto-Poisson estimators for partial duration series. Water Resources Research, United States, v. 37, n.10, p. 2551-2557, 2001.
1944-7973
http://www.repositorio.ufc.br/handle/riufc/59409
identifier_str_mv MARTINS, Eduardo Sávio Passos Rodrigues.; STEDINGER, Jery Russell. Generalized maximum likelihood Pareto-Poisson estimators for partial duration series. Water Resources Research, United States, v. 37, n.10, p. 2551-2557, 2001.
1944-7973
url http://www.repositorio.ufc.br/handle/riufc/59409
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Water Resources Research
publisher.none.fl_str_mv Water Resources Research
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1813028962502180864