Generalized maximum likelihood Pareto-Poisson estimators for partial duration series
Autor(a) principal: | |
---|---|
Data de Publicação: | 2001 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/59409 |
Resumo: | his paper considers use of the generalized Pareto (GP) distribution with a Poisson model for arrivals to describe peaks over a threshold. This yields a three- parameter generalized extreme value (GEV) distribution for the annual maximum series. Maximum likelihood estimates of the GP shape parameter • can result in absurd estimates in small samples. These problems are resolved by addition of a prior distribution on • yielding a generalized maximum likelihood estimator. Results show that a three- parameter partial duration series (PDS) analysis yields quantile estimators with the same precision as an annual maximum series (AMS) analysis when the generalized maximum likelihood (GML) GP and GEV estimators are adopted. For • -< 0 the GML quantile estimators with both PDS and AMS have the best performance among the quantile estimators examined (moments, L moments, and GML). The precision of flood quantiles derived from a PDS analysis is insensitive to the arrival rate X, so that a year of PDS data is generally worth about as much as a year of AMS data when estimating the 100-year flood. |
id |
UFC-7_c5031f26c932b0d42d10d651175543e2 |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/59409 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
Generalized maximum likelihood Pareto-Poisson estimators for partial duration seriesGeneralized maximum likelihood Pareto-Poisson estimators for partial duration seriesInundaçõesChuvasParametroshis paper considers use of the generalized Pareto (GP) distribution with a Poisson model for arrivals to describe peaks over a threshold. This yields a three- parameter generalized extreme value (GEV) distribution for the annual maximum series. Maximum likelihood estimates of the GP shape parameter • can result in absurd estimates in small samples. These problems are resolved by addition of a prior distribution on • yielding a generalized maximum likelihood estimator. Results show that a three- parameter partial duration series (PDS) analysis yields quantile estimators with the same precision as an annual maximum series (AMS) analysis when the generalized maximum likelihood (GML) GP and GEV estimators are adopted. For • -< 0 the GML quantile estimators with both PDS and AMS have the best performance among the quantile estimators examined (moments, L moments, and GML). The precision of flood quantiles derived from a PDS analysis is insensitive to the arrival rate X, so that a year of PDS data is generally worth about as much as a year of AMS data when estimating the 100-year flood.Water Resources Research2021-07-09T11:08:25Z2021-07-09T11:08:25Z2001info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfMARTINS, Eduardo Sávio Passos Rodrigues.; STEDINGER, Jery Russell. Generalized maximum likelihood Pareto-Poisson estimators for partial duration series. Water Resources Research, United States, v. 37, n.10, p. 2551-2557, 2001.1944-7973http://www.repositorio.ufc.br/handle/riufc/59409Martins, Eduardo Sávio Passos RodriguesStedinger, Jery Russellengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2022-11-30T18:43:19Zoai:repositorio.ufc.br:riufc/59409Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:49:47.358278Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Generalized maximum likelihood Pareto-Poisson estimators for partial duration series Generalized maximum likelihood Pareto-Poisson estimators for partial duration series |
title |
Generalized maximum likelihood Pareto-Poisson estimators for partial duration series |
spellingShingle |
Generalized maximum likelihood Pareto-Poisson estimators for partial duration series Martins, Eduardo Sávio Passos Rodrigues Inundações Chuvas Parametros |
title_short |
Generalized maximum likelihood Pareto-Poisson estimators for partial duration series |
title_full |
Generalized maximum likelihood Pareto-Poisson estimators for partial duration series |
title_fullStr |
Generalized maximum likelihood Pareto-Poisson estimators for partial duration series |
title_full_unstemmed |
Generalized maximum likelihood Pareto-Poisson estimators for partial duration series |
title_sort |
Generalized maximum likelihood Pareto-Poisson estimators for partial duration series |
author |
Martins, Eduardo Sávio Passos Rodrigues |
author_facet |
Martins, Eduardo Sávio Passos Rodrigues Stedinger, Jery Russell |
author_role |
author |
author2 |
Stedinger, Jery Russell |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Martins, Eduardo Sávio Passos Rodrigues Stedinger, Jery Russell |
dc.subject.por.fl_str_mv |
Inundações Chuvas Parametros |
topic |
Inundações Chuvas Parametros |
description |
his paper considers use of the generalized Pareto (GP) distribution with a Poisson model for arrivals to describe peaks over a threshold. This yields a three- parameter generalized extreme value (GEV) distribution for the annual maximum series. Maximum likelihood estimates of the GP shape parameter • can result in absurd estimates in small samples. These problems are resolved by addition of a prior distribution on • yielding a generalized maximum likelihood estimator. Results show that a three- parameter partial duration series (PDS) analysis yields quantile estimators with the same precision as an annual maximum series (AMS) analysis when the generalized maximum likelihood (GML) GP and GEV estimators are adopted. For • -< 0 the GML quantile estimators with both PDS and AMS have the best performance among the quantile estimators examined (moments, L moments, and GML). The precision of flood quantiles derived from a PDS analysis is insensitive to the arrival rate X, so that a year of PDS data is generally worth about as much as a year of AMS data when estimating the 100-year flood. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001 2021-07-09T11:08:25Z 2021-07-09T11:08:25Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
MARTINS, Eduardo Sávio Passos Rodrigues.; STEDINGER, Jery Russell. Generalized maximum likelihood Pareto-Poisson estimators for partial duration series. Water Resources Research, United States, v. 37, n.10, p. 2551-2557, 2001. 1944-7973 http://www.repositorio.ufc.br/handle/riufc/59409 |
identifier_str_mv |
MARTINS, Eduardo Sávio Passos Rodrigues.; STEDINGER, Jery Russell. Generalized maximum likelihood Pareto-Poisson estimators for partial duration series. Water Resources Research, United States, v. 37, n.10, p. 2551-2557, 2001. 1944-7973 |
url |
http://www.repositorio.ufc.br/handle/riufc/59409 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Water Resources Research |
publisher.none.fl_str_mv |
Water Resources Research |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813028962502180864 |