An Algorithm Based on Bayes Inference And K-nearest Neighbor For 3D WLAN Indoor Positioning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , |
Tipo de documento: | Artigo de conferência |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/55441 |
Resumo: | This paper proposes a hybrid algorithm based on Bayesian inference and K-Nearest Neighbor to estimate the three- dimensional indoor positioning implemented from a fingerprint technique. Additionally, a comparison was made between the main algorithms discussed in literature. The experiments were conducted in a typical building with two floors with 180m2 and four access points. The proposed solution showed a precision in the location of the rooms of 97% and 90% the estimates were at maximum three meters away from the actual location, furthermore, such method has lower variability than other algorithms, with deviation in relation to the mean reaches of 37.62%. |
id |
UFC-7_c909059ba5813becdffde75af0819657 |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/55441 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
An Algorithm Based on Bayes Inference And K-nearest Neighbor For 3D WLAN Indoor PositioningAn Algorithm Based on Bayes Inference And K-nearest Neighbor For 3D WLAN Indoor Positioning3D indoor positioningFingerprintBayes inferenceK-Nearest NeighborThis paper proposes a hybrid algorithm based on Bayesian inference and K-Nearest Neighbor to estimate the three- dimensional indoor positioning implemented from a fingerprint technique. Additionally, a comparison was made between the main algorithms discussed in literature. The experiments were conducted in a typical building with two floors with 180m2 and four access points. The proposed solution showed a precision in the location of the rooms of 97% and 90% the estimates were at maximum three meters away from the actual location, furthermore, such method has lower variability than other algorithms, with deviation in relation to the mean reaches of 37.62%.2020-11-24T14:02:26Z2020-11-24T14:02:26Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectapplication/pdfNASCIMENTO, Hitalo Joseferson Batista; RODRIGUES, Emanuel Bezerra; CAVALCANTI, Francisco Rodrigo Porto; PAIVA, Antonio Regilane Lima. An Algorithm Based on Bayes Inference And K-nearest Neighbor For 3D WLAN Indoor Positioning. In: SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT2016, 34º., 30 ago. a 02 Set. 2016, Santarém, PA. Anais [...] Santarém, PA., 2016.http://www.repositorio.ufc.br/handle/riufc/55441Nascimento, Hitalo Joseferson BatistaRodrigues, Emanuel BezerraCavalcanti, Francisco Rodrigo PortoPaiva, Antonio Regilane Limaporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2022-05-05T13:34:09Zoai:repositorio.ufc.br:riufc/55441Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:46:34.570519Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
An Algorithm Based on Bayes Inference And K-nearest Neighbor For 3D WLAN Indoor Positioning An Algorithm Based on Bayes Inference And K-nearest Neighbor For 3D WLAN Indoor Positioning |
title |
An Algorithm Based on Bayes Inference And K-nearest Neighbor For 3D WLAN Indoor Positioning |
spellingShingle |
An Algorithm Based on Bayes Inference And K-nearest Neighbor For 3D WLAN Indoor Positioning Nascimento, Hitalo Joseferson Batista 3D indoor positioning Fingerprint Bayes inference K-Nearest Neighbor |
title_short |
An Algorithm Based on Bayes Inference And K-nearest Neighbor For 3D WLAN Indoor Positioning |
title_full |
An Algorithm Based on Bayes Inference And K-nearest Neighbor For 3D WLAN Indoor Positioning |
title_fullStr |
An Algorithm Based on Bayes Inference And K-nearest Neighbor For 3D WLAN Indoor Positioning |
title_full_unstemmed |
An Algorithm Based on Bayes Inference And K-nearest Neighbor For 3D WLAN Indoor Positioning |
title_sort |
An Algorithm Based on Bayes Inference And K-nearest Neighbor For 3D WLAN Indoor Positioning |
author |
Nascimento, Hitalo Joseferson Batista |
author_facet |
Nascimento, Hitalo Joseferson Batista Rodrigues, Emanuel Bezerra Cavalcanti, Francisco Rodrigo Porto Paiva, Antonio Regilane Lima |
author_role |
author |
author2 |
Rodrigues, Emanuel Bezerra Cavalcanti, Francisco Rodrigo Porto Paiva, Antonio Regilane Lima |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Nascimento, Hitalo Joseferson Batista Rodrigues, Emanuel Bezerra Cavalcanti, Francisco Rodrigo Porto Paiva, Antonio Regilane Lima |
dc.subject.por.fl_str_mv |
3D indoor positioning Fingerprint Bayes inference K-Nearest Neighbor |
topic |
3D indoor positioning Fingerprint Bayes inference K-Nearest Neighbor |
description |
This paper proposes a hybrid algorithm based on Bayesian inference and K-Nearest Neighbor to estimate the three- dimensional indoor positioning implemented from a fingerprint technique. Additionally, a comparison was made between the main algorithms discussed in literature. The experiments were conducted in a typical building with two floors with 180m2 and four access points. The proposed solution showed a precision in the location of the rooms of 97% and 90% the estimates were at maximum three meters away from the actual location, furthermore, such method has lower variability than other algorithms, with deviation in relation to the mean reaches of 37.62%. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 2020-11-24T14:02:26Z 2020-11-24T14:02:26Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
NASCIMENTO, Hitalo Joseferson Batista; RODRIGUES, Emanuel Bezerra; CAVALCANTI, Francisco Rodrigo Porto; PAIVA, Antonio Regilane Lima. An Algorithm Based on Bayes Inference And K-nearest Neighbor For 3D WLAN Indoor Positioning. In: SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT2016, 34º., 30 ago. a 02 Set. 2016, Santarém, PA. Anais [...] Santarém, PA., 2016. http://www.repositorio.ufc.br/handle/riufc/55441 |
identifier_str_mv |
NASCIMENTO, Hitalo Joseferson Batista; RODRIGUES, Emanuel Bezerra; CAVALCANTI, Francisco Rodrigo Porto; PAIVA, Antonio Regilane Lima. An Algorithm Based on Bayes Inference And K-nearest Neighbor For 3D WLAN Indoor Positioning. In: SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT2016, 34º., 30 ago. a 02 Set. 2016, Santarém, PA. Anais [...] Santarém, PA., 2016. |
url |
http://www.repositorio.ufc.br/handle/riufc/55441 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813028942131494912 |