An Algorithm Based on Bayes Inference And K-nearest Neighbor For 3D WLAN Indoor Positioning

Detalhes bibliográficos
Autor(a) principal: Nascimento, Hitalo Joseferson Batista
Data de Publicação: 2016
Outros Autores: Rodrigues, Emanuel Bezerra, Cavalcanti, Francisco Rodrigo Porto, Paiva, Antonio Regilane Lima
Tipo de documento: Artigo de conferência
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/55441
Resumo: This paper proposes a hybrid algorithm based on Bayesian inference and K-Nearest Neighbor to estimate the three- dimensional indoor positioning implemented from a fingerprint technique. Additionally, a comparison was made between the main algorithms discussed in literature. The experiments were conducted in a typical building with two floors with 180m2 and four access points. The proposed solution showed a precision in the location of the rooms of 97% and 90% the estimates were at maximum three meters away from the actual location, furthermore, such method has lower variability than other algorithms, with deviation in relation to the mean reaches of 37.62%.
id UFC-7_c909059ba5813becdffde75af0819657
oai_identifier_str oai:repositorio.ufc.br:riufc/55441
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling An Algorithm Based on Bayes Inference And K-nearest Neighbor For 3D WLAN Indoor PositioningAn Algorithm Based on Bayes Inference And K-nearest Neighbor For 3D WLAN Indoor Positioning3D indoor positioningFingerprintBayes inferenceK-Nearest NeighborThis paper proposes a hybrid algorithm based on Bayesian inference and K-Nearest Neighbor to estimate the three- dimensional indoor positioning implemented from a fingerprint technique. Additionally, a comparison was made between the main algorithms discussed in literature. The experiments were conducted in a typical building with two floors with 180m2 and four access points. The proposed solution showed a precision in the location of the rooms of 97% and 90% the estimates were at maximum three meters away from the actual location, furthermore, such method has lower variability than other algorithms, with deviation in relation to the mean reaches of 37.62%.2020-11-24T14:02:26Z2020-11-24T14:02:26Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectapplication/pdfNASCIMENTO, Hitalo Joseferson Batista; RODRIGUES, Emanuel Bezerra; CAVALCANTI, Francisco Rodrigo Porto; PAIVA, Antonio Regilane Lima. An Algorithm Based on Bayes Inference And K-nearest Neighbor For 3D WLAN Indoor Positioning. In: SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT2016, 34º., 30 ago. a 02 Set. 2016, Santarém, PA. Anais [...] Santarém, PA., 2016.http://www.repositorio.ufc.br/handle/riufc/55441Nascimento, Hitalo Joseferson BatistaRodrigues, Emanuel BezerraCavalcanti, Francisco Rodrigo PortoPaiva, Antonio Regilane Limaporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2022-05-05T13:34:09Zoai:repositorio.ufc.br:riufc/55441Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:46:34.570519Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv An Algorithm Based on Bayes Inference And K-nearest Neighbor For 3D WLAN Indoor Positioning
An Algorithm Based on Bayes Inference And K-nearest Neighbor For 3D WLAN Indoor Positioning
title An Algorithm Based on Bayes Inference And K-nearest Neighbor For 3D WLAN Indoor Positioning
spellingShingle An Algorithm Based on Bayes Inference And K-nearest Neighbor For 3D WLAN Indoor Positioning
Nascimento, Hitalo Joseferson Batista
3D indoor positioning
Fingerprint
Bayes inference
K-Nearest Neighbor
title_short An Algorithm Based on Bayes Inference And K-nearest Neighbor For 3D WLAN Indoor Positioning
title_full An Algorithm Based on Bayes Inference And K-nearest Neighbor For 3D WLAN Indoor Positioning
title_fullStr An Algorithm Based on Bayes Inference And K-nearest Neighbor For 3D WLAN Indoor Positioning
title_full_unstemmed An Algorithm Based on Bayes Inference And K-nearest Neighbor For 3D WLAN Indoor Positioning
title_sort An Algorithm Based on Bayes Inference And K-nearest Neighbor For 3D WLAN Indoor Positioning
author Nascimento, Hitalo Joseferson Batista
author_facet Nascimento, Hitalo Joseferson Batista
Rodrigues, Emanuel Bezerra
Cavalcanti, Francisco Rodrigo Porto
Paiva, Antonio Regilane Lima
author_role author
author2 Rodrigues, Emanuel Bezerra
Cavalcanti, Francisco Rodrigo Porto
Paiva, Antonio Regilane Lima
author2_role author
author
author
dc.contributor.author.fl_str_mv Nascimento, Hitalo Joseferson Batista
Rodrigues, Emanuel Bezerra
Cavalcanti, Francisco Rodrigo Porto
Paiva, Antonio Regilane Lima
dc.subject.por.fl_str_mv 3D indoor positioning
Fingerprint
Bayes inference
K-Nearest Neighbor
topic 3D indoor positioning
Fingerprint
Bayes inference
K-Nearest Neighbor
description This paper proposes a hybrid algorithm based on Bayesian inference and K-Nearest Neighbor to estimate the three- dimensional indoor positioning implemented from a fingerprint technique. Additionally, a comparison was made between the main algorithms discussed in literature. The experiments were conducted in a typical building with two floors with 180m2 and four access points. The proposed solution showed a precision in the location of the rooms of 97% and 90% the estimates were at maximum three meters away from the actual location, furthermore, such method has lower variability than other algorithms, with deviation in relation to the mean reaches of 37.62%.
publishDate 2016
dc.date.none.fl_str_mv 2016
2020-11-24T14:02:26Z
2020-11-24T14:02:26Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv NASCIMENTO, Hitalo Joseferson Batista; RODRIGUES, Emanuel Bezerra; CAVALCANTI, Francisco Rodrigo Porto; PAIVA, Antonio Regilane Lima. An Algorithm Based on Bayes Inference And K-nearest Neighbor For 3D WLAN Indoor Positioning. In: SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT2016, 34º., 30 ago. a 02 Set. 2016, Santarém, PA. Anais [...] Santarém, PA., 2016.
http://www.repositorio.ufc.br/handle/riufc/55441
identifier_str_mv NASCIMENTO, Hitalo Joseferson Batista; RODRIGUES, Emanuel Bezerra; CAVALCANTI, Francisco Rodrigo Porto; PAIVA, Antonio Regilane Lima. An Algorithm Based on Bayes Inference And K-nearest Neighbor For 3D WLAN Indoor Positioning. In: SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT2016, 34º., 30 ago. a 02 Set. 2016, Santarém, PA. Anais [...] Santarém, PA., 2016.
url http://www.repositorio.ufc.br/handle/riufc/55441
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1813028942131494912