Da rigidez de variedades kählerianas munidas de campo vetorial conforme fechado.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/50768 |
Resumo: | The goal of this work is to demonstrate two results about the rigidity of kählerian manifolds under certain conditions. In the first result, we show that if a connected compact kählerian surface M with nonpositive gaussian curvature is endowed with a closed conformal vector field ξ whose singular points are isolated, then M has necessarily zero gaussian curvature, ξ is parallel and M is isometric to a flat torus. In the second result, we consider a connected complete kählerian manifold M, of complex dimension n > 1 and equipped with a nontrivial closed conformal vector field ξ. In this case, if the distribution D in M \ ξ −1 (0), generated by ξ and Jξ, has one compact leaf Σ with nonpositive holomorphic sectional curvature and Hol ⊥ (Σ) is a torsion group, then ξ −1 (0) = ∅, ξ and Jξ are parallel in M, the leafs of D are isometric to the flat torus and the leafs of D ⊥ are isometric to a kählerian manifold of complex dimension n − 1. In particular, the universal covering of M is a cartesian product of R2 with a connected, simply connected, complete kählerian manifold. |
id |
UFC-7_c979b7cfee2cd6d05aff377c33c39f7d |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/50768 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
Da rigidez de variedades kählerianas munidas de campo vetorial conforme fechado.Stiffness of Kählerian varieties with vector field as closed.Variedades kählerianasCampo conforme fechadoCurvatura não positivaToro planoCampos paralelosKählerian manifoldsClosed conformal vector fieldsNonpositive curvatureFlat torusParallel vector fieldsThe goal of this work is to demonstrate two results about the rigidity of kählerian manifolds under certain conditions. In the first result, we show that if a connected compact kählerian surface M with nonpositive gaussian curvature is endowed with a closed conformal vector field ξ whose singular points are isolated, then M has necessarily zero gaussian curvature, ξ is parallel and M is isometric to a flat torus. In the second result, we consider a connected complete kählerian manifold M, of complex dimension n > 1 and equipped with a nontrivial closed conformal vector field ξ. In this case, if the distribution D in M \ ξ −1 (0), generated by ξ and Jξ, has one compact leaf Σ with nonpositive holomorphic sectional curvature and Hol ⊥ (Σ) is a torsion group, then ξ −1 (0) = ∅, ξ and Jξ are parallel in M, the leafs of D are isometric to the flat torus and the leafs of D ⊥ are isometric to a kählerian manifold of complex dimension n − 1. In particular, the universal covering of M is a cartesian product of R2 with a connected, simply connected, complete kählerian manifold.O objetivo desse trabalho é mostrar dois resultados sobre a rigidez de variedades kählerianas sob certas restrições. No primeiro resultado, mostraremos que se uma superfície kähleriana conexa e compacta M de curvatura gaussiana não positiva, está munida de campo conforme fechado ξ com zeros isolados, então M terá necessariamente curvatura gaussiana nula, ξ será paralelo e M será isométrica ao toro plano. Para o outro resultado, consideraremos M uma variedade kähleriana conexa, completa, de dimensão complexa n > 1 e munida com campo conforme fechado não trivial ξ. Nesse caso, se a distribuição D em M \ ξ −1 (0), gerada por ξ e Jξ, possui uma folha compacta Σ de curvatura seccional holomorfa não positiva e Hol ⊥ (Σ) é um grupo de torção, então ξ −1 (0) = ∅, ξ e Jξ são paralelos em M, as folhas de D são isométricas a um toro plano e as folhas de D ⊥ são isométricas a uma variedade kähleriana de dimensão complexa n − 1. Em particular, o recobrimento universal de M é o produto cartesiano de R2 com uma variedade kähleriana conexa, simplesmente conexa e completa.Muniz Neto, Antonio CaminhaXavier, Valricélio Menezes2020-03-17T17:44:10Z2020-03-17T17:44:10Z2018-07-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfXAVIER, Valricélio Menezes. Da rigidez de variedades Kählerianas munidas de campo vetorial conforme fechado. 2018. 80 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2018.http://www.repositorio.ufc.br/handle/riufc/50768porreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2020-03-17T17:44:11Zoai:repositorio.ufc.br:riufc/50768Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T19:00:31.958574Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Da rigidez de variedades kählerianas munidas de campo vetorial conforme fechado. Stiffness of Kählerian varieties with vector field as closed. |
title |
Da rigidez de variedades kählerianas munidas de campo vetorial conforme fechado. |
spellingShingle |
Da rigidez de variedades kählerianas munidas de campo vetorial conforme fechado. Xavier, Valricélio Menezes Variedades kählerianas Campo conforme fechado Curvatura não positiva Toro plano Campos paralelos Kählerian manifolds Closed conformal vector fields Nonpositive curvature Flat torus Parallel vector fields |
title_short |
Da rigidez de variedades kählerianas munidas de campo vetorial conforme fechado. |
title_full |
Da rigidez de variedades kählerianas munidas de campo vetorial conforme fechado. |
title_fullStr |
Da rigidez de variedades kählerianas munidas de campo vetorial conforme fechado. |
title_full_unstemmed |
Da rigidez de variedades kählerianas munidas de campo vetorial conforme fechado. |
title_sort |
Da rigidez de variedades kählerianas munidas de campo vetorial conforme fechado. |
author |
Xavier, Valricélio Menezes |
author_facet |
Xavier, Valricélio Menezes |
author_role |
author |
dc.contributor.none.fl_str_mv |
Muniz Neto, Antonio Caminha |
dc.contributor.author.fl_str_mv |
Xavier, Valricélio Menezes |
dc.subject.por.fl_str_mv |
Variedades kählerianas Campo conforme fechado Curvatura não positiva Toro plano Campos paralelos Kählerian manifolds Closed conformal vector fields Nonpositive curvature Flat torus Parallel vector fields |
topic |
Variedades kählerianas Campo conforme fechado Curvatura não positiva Toro plano Campos paralelos Kählerian manifolds Closed conformal vector fields Nonpositive curvature Flat torus Parallel vector fields |
description |
The goal of this work is to demonstrate two results about the rigidity of kählerian manifolds under certain conditions. In the first result, we show that if a connected compact kählerian surface M with nonpositive gaussian curvature is endowed with a closed conformal vector field ξ whose singular points are isolated, then M has necessarily zero gaussian curvature, ξ is parallel and M is isometric to a flat torus. In the second result, we consider a connected complete kählerian manifold M, of complex dimension n > 1 and equipped with a nontrivial closed conformal vector field ξ. In this case, if the distribution D in M \ ξ −1 (0), generated by ξ and Jξ, has one compact leaf Σ with nonpositive holomorphic sectional curvature and Hol ⊥ (Σ) is a torsion group, then ξ −1 (0) = ∅, ξ and Jξ are parallel in M, the leafs of D are isometric to the flat torus and the leafs of D ⊥ are isometric to a kählerian manifold of complex dimension n − 1. In particular, the universal covering of M is a cartesian product of R2 with a connected, simply connected, complete kählerian manifold. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-07-11 2020-03-17T17:44:10Z 2020-03-17T17:44:10Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
XAVIER, Valricélio Menezes. Da rigidez de variedades Kählerianas munidas de campo vetorial conforme fechado. 2018. 80 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2018. http://www.repositorio.ufc.br/handle/riufc/50768 |
identifier_str_mv |
XAVIER, Valricélio Menezes. Da rigidez de variedades Kählerianas munidas de campo vetorial conforme fechado. 2018. 80 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2018. |
url |
http://www.repositorio.ufc.br/handle/riufc/50768 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813029031480655872 |