Resource allocation for energy efficiency and QoS provisioning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/70646 |
Resumo: | In this paper, we formulate and solve two Energy Efficiency (EE) problems, namely the Power Minimization Problem (PMP) and the Maximization of Energy Efficiency Problem (MEEP), for a wireless system using power and frequency resource allocation considering Quality of Service (QoS) requirements and multiple services. Despite those problems are nonlinear, they can be converted into Integer Linear Problems (ILPs). Therefore, the optimal solution for both PMP and MEEP can be obtained by well-known methods. Additionally, we propose two fast suboptimal algorithms as to avoid the high computational complexity of obtaining optimal solution for MEEP. Our results show that the MEEP has a better trade-off between transmitted data rate and power saving than the PMP solution. Moreover, the suboptimal algorithms present good performance compared to the optimal solution for moderated loads but with a much lower computational complexity, thus achieving a remarkable trade-off between performance and computational complexity. |
id |
UFC-7_dc4cab2f27d0a128a326ddad02d37b92 |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/70646 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
Resource allocation for energy efficiency and QoS provisioningRadio resource allocationEnergy efficiencyQuality of serviceMultiple servicesIn this paper, we formulate and solve two Energy Efficiency (EE) problems, namely the Power Minimization Problem (PMP) and the Maximization of Energy Efficiency Problem (MEEP), for a wireless system using power and frequency resource allocation considering Quality of Service (QoS) requirements and multiple services. Despite those problems are nonlinear, they can be converted into Integer Linear Problems (ILPs). Therefore, the optimal solution for both PMP and MEEP can be obtained by well-known methods. Additionally, we propose two fast suboptimal algorithms as to avoid the high computational complexity of obtaining optimal solution for MEEP. Our results show that the MEEP has a better trade-off between transmitted data rate and power saving than the PMP solution. Moreover, the suboptimal algorithms present good performance compared to the optimal solution for moderated loads but with a much lower computational complexity, thus achieving a remarkable trade-off between performance and computational complexity.Journal of Communication and Information Systems2023-02-09T11:33:37Z2023-02-09T11:33:37Z2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfMACIEL, T. F. et al. Resource allocation for energy efficiency and QoS provisioning. Journal of Communication and Information Systems, [s.l.], v. 34, n. 1, p. 224-238, 2019. DOI: https://doi.org/10.14209/jcis.2019.241980-6604http://www.repositorio.ufc.br/handle/riufc/70646Mauricio, Weskley Vinicius FernandesLima, Francisco Rafael MarquesAbrão, TaufikMaciel, Tarcísio FerreiraSousa, Diego Aguiarengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2023-02-09T11:33:37Zoai:repositorio.ufc.br:riufc/70646Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:40:11.924052Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Resource allocation for energy efficiency and QoS provisioning |
title |
Resource allocation for energy efficiency and QoS provisioning |
spellingShingle |
Resource allocation for energy efficiency and QoS provisioning Mauricio, Weskley Vinicius Fernandes Radio resource allocation Energy efficiency Quality of service Multiple services |
title_short |
Resource allocation for energy efficiency and QoS provisioning |
title_full |
Resource allocation for energy efficiency and QoS provisioning |
title_fullStr |
Resource allocation for energy efficiency and QoS provisioning |
title_full_unstemmed |
Resource allocation for energy efficiency and QoS provisioning |
title_sort |
Resource allocation for energy efficiency and QoS provisioning |
author |
Mauricio, Weskley Vinicius Fernandes |
author_facet |
Mauricio, Weskley Vinicius Fernandes Lima, Francisco Rafael Marques Abrão, Taufik Maciel, Tarcísio Ferreira Sousa, Diego Aguiar |
author_role |
author |
author2 |
Lima, Francisco Rafael Marques Abrão, Taufik Maciel, Tarcísio Ferreira Sousa, Diego Aguiar |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Mauricio, Weskley Vinicius Fernandes Lima, Francisco Rafael Marques Abrão, Taufik Maciel, Tarcísio Ferreira Sousa, Diego Aguiar |
dc.subject.por.fl_str_mv |
Radio resource allocation Energy efficiency Quality of service Multiple services |
topic |
Radio resource allocation Energy efficiency Quality of service Multiple services |
description |
In this paper, we formulate and solve two Energy Efficiency (EE) problems, namely the Power Minimization Problem (PMP) and the Maximization of Energy Efficiency Problem (MEEP), for a wireless system using power and frequency resource allocation considering Quality of Service (QoS) requirements and multiple services. Despite those problems are nonlinear, they can be converted into Integer Linear Problems (ILPs). Therefore, the optimal solution for both PMP and MEEP can be obtained by well-known methods. Additionally, we propose two fast suboptimal algorithms as to avoid the high computational complexity of obtaining optimal solution for MEEP. Our results show that the MEEP has a better trade-off between transmitted data rate and power saving than the PMP solution. Moreover, the suboptimal algorithms present good performance compared to the optimal solution for moderated loads but with a much lower computational complexity, thus achieving a remarkable trade-off between performance and computational complexity. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 2023-02-09T11:33:37Z 2023-02-09T11:33:37Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
MACIEL, T. F. et al. Resource allocation for energy efficiency and QoS provisioning. Journal of Communication and Information Systems, [s.l.], v. 34, n. 1, p. 224-238, 2019. DOI: https://doi.org/10.14209/jcis.2019.24 1980-6604 http://www.repositorio.ufc.br/handle/riufc/70646 |
identifier_str_mv |
MACIEL, T. F. et al. Resource allocation for energy efficiency and QoS provisioning. Journal of Communication and Information Systems, [s.l.], v. 34, n. 1, p. 224-238, 2019. DOI: https://doi.org/10.14209/jcis.2019.24 1980-6604 |
url |
http://www.repositorio.ufc.br/handle/riufc/70646 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Journal of Communication and Information Systems |
publisher.none.fl_str_mv |
Journal of Communication and Information Systems |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813028899579232256 |