Ágape: Framework para detecção de quedas de idosos e suas causas com dispositivos vestíveis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/65313 |
Resumo: | The Internet of Things (IoT) allows everyday objects to communicate with the Internet and, with that, more useful services are provided to users. These services can be embedded in various domains, such as health with Internet of Health Things (IoHT), in which smart devices can monitor patients in order to collect data and identify abnormal situations, indicating the occurrence of emergency situations. One of the situations that can be monitored is an elderly fall, a worldwide problem that can have serious consequences, including death. Given this scenario, it is important to detect a fall more quickly so that the sequelae are minimized. However, just detecting the fall is not enough, as they can be originated from health problems that also need to be treated, such as blood pressure problems and diabetes, called intrinsic causes, and that can be monitored by IoT wearable devices. Therefore, a multi-device solution that detects fall events and possible causative factors can help minimize sequelae. Within this scope, studies were found in the literature that aimed to detect falls, but without relating to other aspects of the health of the elderly that can result in falls. In addition, there was a lack of works with software reuse to facilitate the development of applications for the detection of falls that consider multiple devices and that also relate the fall to its probable intrinsic cause. So, this work proposes a framework, reuse artifact that contains codes common to applications in a domain, called Agape, whose objective is to facilitate the development of IoHT applications for fall detection focusing on wearable IoT devices, relating falls with their possible causes. Agape was evaluated in terms of the time required to configure it, the time required to develop an application with its support, in addition to an evaluation based on the Technology Acceptance Model (TAM), in order to identify the perception of usefulness and ease of use of Agape by the participants. The results indicate that the framework reduces the development time of applications to detect falls and their possible causes by 98.09%. In addition, participants indicated that they were able to perceive the usefulness of Ágape as well as found it easy to use. |
id |
UFC-7_ec3ad0e839521f4e4e51e767ce4ddaf6 |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/65313 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
Ágape: Framework para detecção de quedas de idosos e suas causas com dispositivos vestíveisAgape: Framework for detecting elderly falls and their causes with wearable devicesArcabouçoInternet das Coisas de SaúdeDetecção de quedasThe Internet of Things (IoT) allows everyday objects to communicate with the Internet and, with that, more useful services are provided to users. These services can be embedded in various domains, such as health with Internet of Health Things (IoHT), in which smart devices can monitor patients in order to collect data and identify abnormal situations, indicating the occurrence of emergency situations. One of the situations that can be monitored is an elderly fall, a worldwide problem that can have serious consequences, including death. Given this scenario, it is important to detect a fall more quickly so that the sequelae are minimized. However, just detecting the fall is not enough, as they can be originated from health problems that also need to be treated, such as blood pressure problems and diabetes, called intrinsic causes, and that can be monitored by IoT wearable devices. Therefore, a multi-device solution that detects fall events and possible causative factors can help minimize sequelae. Within this scope, studies were found in the literature that aimed to detect falls, but without relating to other aspects of the health of the elderly that can result in falls. In addition, there was a lack of works with software reuse to facilitate the development of applications for the detection of falls that consider multiple devices and that also relate the fall to its probable intrinsic cause. So, this work proposes a framework, reuse artifact that contains codes common to applications in a domain, called Agape, whose objective is to facilitate the development of IoHT applications for fall detection focusing on wearable IoT devices, relating falls with their possible causes. Agape was evaluated in terms of the time required to configure it, the time required to develop an application with its support, in addition to an evaluation based on the Technology Acceptance Model (TAM), in order to identify the perception of usefulness and ease of use of Agape by the participants. The results indicate that the framework reduces the development time of applications to detect falls and their possible causes by 98.09%. In addition, participants indicated that they were able to perceive the usefulness of Ágape as well as found it easy to use.A Internet das Coisas (IoT, do inglês Internet of Things) permite a comunicação de objetos do dia-a-dia com a Internet e, com isso, mais serviços úteis são providos aos usuários. Esses serviços podem estar inseridos em vários domínios, como na saúde (IoHT, do inglês, Internet of Health Things), no qual dispositivos inteligentes podem monitorar os pacientes a fim de coletar dados e identificar situações anormais, indicando a ocorrência de situações de emergência. Uma das situações que pode ser monitorada é a queda de idosos, um problema mundial que pode ter consequências graves, inclusive óbito. Diante desse cenário, é importante detectar uma queda mais rapidamente para que as sequelas sejam minimizadas. Contudo, detectar apenas a queda não é suficiente, pois elas podem ter origem em problemas de saúde que também precisam ser tratados, como problemas de pressão arterial e diabetes, sendo chamados de causas intrínsecas, e que podem ser monitorados por dispositivos vestíveis de IoT. Sendo assim, uma solução com múltiplos dispositivos que detecta eventos de quedas e possíveis fatores causadores pode auxiliar a minimizar as sequelas. Dentro desse escopo, foram encontrados trabalhos na literatura que visavam a detecção de quedas, porém sem relacionar com outros aspectos da saúde do idoso que podem resultar nas quedas. Além disso, verificou-se a ausência de trabalhos com reuso de software para facilitar o desenvolvimento de aplicações para detecção dessas quedas considerando multidispositivos e que também relacionassem a queda com a sua provável causa intrínseca. Então, este trabalho propõe um framework, artefato de reuso que contém códigos comuns a aplicações de um domínio, chamado Ágape, cujo objetivo é facilitar o desenvolvimento de aplicações IoHT para detecção de quedas com foco em dispositivos IoT vestíveis, relacionando as quedas com suas possíveis causas. O Ágape foi avaliado em relação ao tempo necessário para configurá-lo, o tempo necessário para desenvolver uma aplicação com o seu suporte, além de uma avaliação baseada no Technology Acceptance Model (TAM), a fim de identificar a percepção de utilidade e de facilidade de uso do Ágape pelos participantes. Os resultados indicam que o framework reduz o tempo de desenvolvimento de aplicações para detecção de quedas e suas possíveis causas em 98,09%. Além disso, os participantes indicaram que conseguiram perceber a utilidade do Ágape, bem como acharam fácil utilizá-lo.Andrade, Rossana Maria de CastroAguilar, Paulo Armando CavalcanteAraújo, Ítalo Linhares de2022-04-27T13:49:18Z2022-04-27T13:49:18Z2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfARAÚJO, Ítalo Linhares de. Ágape: Framework para detecção de quedas de idosos e suas causas com dispositivos vestíveis. 2022. 143 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2022.http://www.repositorio.ufc.br/handle/riufc/65313porreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2022-04-27T13:49:21Zoai:repositorio.ufc.br:riufc/65313Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:33:34.219697Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Ágape: Framework para detecção de quedas de idosos e suas causas com dispositivos vestíveis Agape: Framework for detecting elderly falls and their causes with wearable devices |
title |
Ágape: Framework para detecção de quedas de idosos e suas causas com dispositivos vestíveis |
spellingShingle |
Ágape: Framework para detecção de quedas de idosos e suas causas com dispositivos vestíveis Araújo, Ítalo Linhares de Arcabouço Internet das Coisas de Saúde Detecção de quedas |
title_short |
Ágape: Framework para detecção de quedas de idosos e suas causas com dispositivos vestíveis |
title_full |
Ágape: Framework para detecção de quedas de idosos e suas causas com dispositivos vestíveis |
title_fullStr |
Ágape: Framework para detecção de quedas de idosos e suas causas com dispositivos vestíveis |
title_full_unstemmed |
Ágape: Framework para detecção de quedas de idosos e suas causas com dispositivos vestíveis |
title_sort |
Ágape: Framework para detecção de quedas de idosos e suas causas com dispositivos vestíveis |
author |
Araújo, Ítalo Linhares de |
author_facet |
Araújo, Ítalo Linhares de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Andrade, Rossana Maria de Castro Aguilar, Paulo Armando Cavalcante |
dc.contributor.author.fl_str_mv |
Araújo, Ítalo Linhares de |
dc.subject.por.fl_str_mv |
Arcabouço Internet das Coisas de Saúde Detecção de quedas |
topic |
Arcabouço Internet das Coisas de Saúde Detecção de quedas |
description |
The Internet of Things (IoT) allows everyday objects to communicate with the Internet and, with that, more useful services are provided to users. These services can be embedded in various domains, such as health with Internet of Health Things (IoHT), in which smart devices can monitor patients in order to collect data and identify abnormal situations, indicating the occurrence of emergency situations. One of the situations that can be monitored is an elderly fall, a worldwide problem that can have serious consequences, including death. Given this scenario, it is important to detect a fall more quickly so that the sequelae are minimized. However, just detecting the fall is not enough, as they can be originated from health problems that also need to be treated, such as blood pressure problems and diabetes, called intrinsic causes, and that can be monitored by IoT wearable devices. Therefore, a multi-device solution that detects fall events and possible causative factors can help minimize sequelae. Within this scope, studies were found in the literature that aimed to detect falls, but without relating to other aspects of the health of the elderly that can result in falls. In addition, there was a lack of works with software reuse to facilitate the development of applications for the detection of falls that consider multiple devices and that also relate the fall to its probable intrinsic cause. So, this work proposes a framework, reuse artifact that contains codes common to applications in a domain, called Agape, whose objective is to facilitate the development of IoHT applications for fall detection focusing on wearable IoT devices, relating falls with their possible causes. Agape was evaluated in terms of the time required to configure it, the time required to develop an application with its support, in addition to an evaluation based on the Technology Acceptance Model (TAM), in order to identify the perception of usefulness and ease of use of Agape by the participants. The results indicate that the framework reduces the development time of applications to detect falls and their possible causes by 98.09%. In addition, participants indicated that they were able to perceive the usefulness of Ágape as well as found it easy to use. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-04-27T13:49:18Z 2022-04-27T13:49:18Z 2022 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
ARAÚJO, Ítalo Linhares de. Ágape: Framework para detecção de quedas de idosos e suas causas com dispositivos vestíveis. 2022. 143 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2022. http://www.repositorio.ufc.br/handle/riufc/65313 |
identifier_str_mv |
ARAÚJO, Ítalo Linhares de. Ágape: Framework para detecção de quedas de idosos e suas causas com dispositivos vestíveis. 2022. 143 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2022. |
url |
http://www.repositorio.ufc.br/handle/riufc/65313 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813028854811328512 |