Imagens sentinel-2a (msi) aplicadas ao mapeamento geológico, Região de Itataia, Santa Quitéria, Ce

Detalhes bibliográficos
Autor(a) principal: Miranda, Mateus de Paula
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
dARK ID: ark:/83112/00130000001h9
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/48865
Resumo: The phosphorus-uraniferous province of the Itataia region, object of this study, is located in the municipality of Santa Quitéria / CE and inserted in the geological context of Ceará Central Domain (DCC) of the Borborema Province (PB). It is a unique mineralization in the world where Its main ore is colofanite. Satellites equipped with multispectral sensors such as Landsat (TM, ETM +, OLI) series play an important role in geological applications. O The objective of this work was to compare the images of the MSI / Sentinel-2 sensors and the OLI / Landsat-8, using statistical parameters such as Pearson's coefficient, and analyzing its applications for geological mapping. For this, the bands were selected of both sensors and preprocessed to a compatible dataset for Comparation. Subsequently, the coefficients were generated between the pairs of correlated bands, and also band ratios for data analysis. Sentinel-2 images showed strong correlation with Landsat-8 images, with Pearson coefficients ranging from 0.857 to 0.930. With these results confirming the evenness between the sensors. Techniques of Digital Image Processing employed in Sentinel-2A images to enhance the lithologies from the Itataia region were: Band ratios, Optimal Index Factor (OIF), Independent Component Analysis (ICA), Minimum Noise Fraction (MNF), Analysis by Main Components (APC), RGB Composition, and Low Pass Filtering. The compositions RGB colors that best highlighted the lithologies of the study area and enhanced the colofanite (phosphorus-uranium ore) were with MNFs R (3) G (4) B (7) bands and with ICA bands R (6) G (5) B (3). Coupled with powerful PDI techniques, Sentinel-2A images satisfactory results in geological mapping application and mineral prospecting.
id UFC-7_f043396f7e176a585215d30447e060fb
oai_identifier_str oai:repositorio.ufc.br:riufc/48865
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Imagens sentinel-2a (msi) aplicadas ao mapeamento geológico, Região de Itataia, Santa Quitéria, CeSentinel-2a (msi) images applied to geological mapping, Itataia Region, Santa Quiteria, CeOptimal Index Factor (OIF)Independente Component Analysis (ICA)Minimum Noise Fraction (MNF)The phosphorus-uraniferous province of the Itataia region, object of this study, is located in the municipality of Santa Quitéria / CE and inserted in the geological context of Ceará Central Domain (DCC) of the Borborema Province (PB). It is a unique mineralization in the world where Its main ore is colofanite. Satellites equipped with multispectral sensors such as Landsat (TM, ETM +, OLI) series play an important role in geological applications. O The objective of this work was to compare the images of the MSI / Sentinel-2 sensors and the OLI / Landsat-8, using statistical parameters such as Pearson's coefficient, and analyzing its applications for geological mapping. For this, the bands were selected of both sensors and preprocessed to a compatible dataset for Comparation. Subsequently, the coefficients were generated between the pairs of correlated bands, and also band ratios for data analysis. Sentinel-2 images showed strong correlation with Landsat-8 images, with Pearson coefficients ranging from 0.857 to 0.930. With these results confirming the evenness between the sensors. Techniques of Digital Image Processing employed in Sentinel-2A images to enhance the lithologies from the Itataia region were: Band ratios, Optimal Index Factor (OIF), Independent Component Analysis (ICA), Minimum Noise Fraction (MNF), Analysis by Main Components (APC), RGB Composition, and Low Pass Filtering. The compositions RGB colors that best highlighted the lithologies of the study area and enhanced the colofanite (phosphorus-uranium ore) were with MNFs R (3) G (4) B (7) bands and with ICA bands R (6) G (5) B (3). Coupled with powerful PDI techniques, Sentinel-2A images satisfactory results in geological mapping application and mineral prospecting.A província fósforo-uranífera da região de Itataia, objeto deste estudo, está localizada no município de Santa Quitéria/CE e inserida no contexto geológico do Domínio Ceará Central (DCC) da Província Borborema (PB). Trata-se de uma mineralização única no mundo em que seu principal minério é o colofanito. Satélites equipados com sensores multiespectrais, como os da série Landsat (TM, ETM+, OLI), tem um importante papel em aplicações geológicas. O objetivo deste trabalho foi efetuar a comparação das imagens dos sensores MSI/Sentinel-2 e do OLI/Landsat-8, por meio de parâmetros estatísticos, como o coeficiente de Pearson, e analisar suas aplicações para o mapeamento geológico. Para tanto, foram selecionadas as bandas correlatas de ambos os sensores e pré-processadas para um conjunto de dados compatível para comparação. Posteriormente, foram gerados os coeficientes entre os pares de bandas correlatas, e também razões de bandas para análise dos dados. As imagens Sentinel-2 apresentaram forte correlação com as imagens Landsat-8, com coeficientes de Pearson variando entre 0,857 e 0,930. Com esses resultados confirmando a equiparidade entre os sensores. Técnicas de Processamento Digital de Imagens empregadas nas imagens Sentinel-2A, para realçar as litologias da região de Itataia, foram: Razões de banda, Optimal Index Factor (OIF), Independente Component Analysis (ICA), Minimum Noise Fraction (MNF), Análise por Componentes Principais (APC), Composição RGB e Filtragem Passa-Baixa. As composições coloridas RGB que melhor destacaram as litologias da área de estudo e realçaram o colofanito (minério fósforo-uranífero) foram com as bandas MNFs R (3) G (4) B (7) e com as bandas ICA R (6) G (5) B (3). Aliadas a poderosas técnicas de PDI as imagens Sentinel-2A apresentaram resultados satisfatórios em aplicação de mapeamento geológico e prospecção mineral.Duarte, Cynthia RomarizGomes, Daniel Dantas MoreiraMiranda, Mateus de Paula2019-12-18T16:52:28Z2019-12-18T16:52:28Z2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfMIRANDA, Mateus de Paula. Imagens sentinel-2a (msi) aplicadas ao mapeamento geológico, Região de Itataia, Santa Quitéria, Ce. 2019. 77 f. Dissertação (Mestrado em Geologia) - Universidade Federal do Ceará, Fortaleza, 2019.http://www.repositorio.ufc.br/handle/riufc/48865ark:/83112/00130000001h9porreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2019-12-18T16:52:55Zoai:repositorio.ufc.br:riufc/48865Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:40:12.491946Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv Imagens sentinel-2a (msi) aplicadas ao mapeamento geológico, Região de Itataia, Santa Quitéria, Ce
Sentinel-2a (msi) images applied to geological mapping, Itataia Region, Santa Quiteria, Ce
title Imagens sentinel-2a (msi) aplicadas ao mapeamento geológico, Região de Itataia, Santa Quitéria, Ce
spellingShingle Imagens sentinel-2a (msi) aplicadas ao mapeamento geológico, Região de Itataia, Santa Quitéria, Ce
Miranda, Mateus de Paula
Optimal Index Factor (OIF)
Independente Component Analysis (ICA)
Minimum Noise Fraction (MNF)
title_short Imagens sentinel-2a (msi) aplicadas ao mapeamento geológico, Região de Itataia, Santa Quitéria, Ce
title_full Imagens sentinel-2a (msi) aplicadas ao mapeamento geológico, Região de Itataia, Santa Quitéria, Ce
title_fullStr Imagens sentinel-2a (msi) aplicadas ao mapeamento geológico, Região de Itataia, Santa Quitéria, Ce
title_full_unstemmed Imagens sentinel-2a (msi) aplicadas ao mapeamento geológico, Região de Itataia, Santa Quitéria, Ce
title_sort Imagens sentinel-2a (msi) aplicadas ao mapeamento geológico, Região de Itataia, Santa Quitéria, Ce
author Miranda, Mateus de Paula
author_facet Miranda, Mateus de Paula
author_role author
dc.contributor.none.fl_str_mv Duarte, Cynthia Romariz
Gomes, Daniel Dantas Moreira
dc.contributor.author.fl_str_mv Miranda, Mateus de Paula
dc.subject.por.fl_str_mv Optimal Index Factor (OIF)
Independente Component Analysis (ICA)
Minimum Noise Fraction (MNF)
topic Optimal Index Factor (OIF)
Independente Component Analysis (ICA)
Minimum Noise Fraction (MNF)
description The phosphorus-uraniferous province of the Itataia region, object of this study, is located in the municipality of Santa Quitéria / CE and inserted in the geological context of Ceará Central Domain (DCC) of the Borborema Province (PB). It is a unique mineralization in the world where Its main ore is colofanite. Satellites equipped with multispectral sensors such as Landsat (TM, ETM +, OLI) series play an important role in geological applications. O The objective of this work was to compare the images of the MSI / Sentinel-2 sensors and the OLI / Landsat-8, using statistical parameters such as Pearson's coefficient, and analyzing its applications for geological mapping. For this, the bands were selected of both sensors and preprocessed to a compatible dataset for Comparation. Subsequently, the coefficients were generated between the pairs of correlated bands, and also band ratios for data analysis. Sentinel-2 images showed strong correlation with Landsat-8 images, with Pearson coefficients ranging from 0.857 to 0.930. With these results confirming the evenness between the sensors. Techniques of Digital Image Processing employed in Sentinel-2A images to enhance the lithologies from the Itataia region were: Band ratios, Optimal Index Factor (OIF), Independent Component Analysis (ICA), Minimum Noise Fraction (MNF), Analysis by Main Components (APC), RGB Composition, and Low Pass Filtering. The compositions RGB colors that best highlighted the lithologies of the study area and enhanced the colofanite (phosphorus-uranium ore) were with MNFs R (3) G (4) B (7) bands and with ICA bands R (6) G (5) B (3). Coupled with powerful PDI techniques, Sentinel-2A images satisfactory results in geological mapping application and mineral prospecting.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-18T16:52:28Z
2019-12-18T16:52:28Z
2019
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv MIRANDA, Mateus de Paula. Imagens sentinel-2a (msi) aplicadas ao mapeamento geológico, Região de Itataia, Santa Quitéria, Ce. 2019. 77 f. Dissertação (Mestrado em Geologia) - Universidade Federal do Ceará, Fortaleza, 2019.
http://www.repositorio.ufc.br/handle/riufc/48865
dc.identifier.dark.fl_str_mv ark:/83112/00130000001h9
identifier_str_mv MIRANDA, Mateus de Paula. Imagens sentinel-2a (msi) aplicadas ao mapeamento geológico, Região de Itataia, Santa Quitéria, Ce. 2019. 77 f. Dissertação (Mestrado em Geologia) - Universidade Federal do Ceará, Fortaleza, 2019.
ark:/83112/00130000001h9
url http://www.repositorio.ufc.br/handle/riufc/48865
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1818373680219029504