Imagens sentinel-2a (msi) aplicadas ao mapeamento geológico, Região de Itataia, Santa Quitéria, Ce
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
dARK ID: | ark:/83112/00130000001h9 |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/48865 |
Resumo: | The phosphorus-uraniferous province of the Itataia region, object of this study, is located in the municipality of Santa Quitéria / CE and inserted in the geological context of Ceará Central Domain (DCC) of the Borborema Province (PB). It is a unique mineralization in the world where Its main ore is colofanite. Satellites equipped with multispectral sensors such as Landsat (TM, ETM +, OLI) series play an important role in geological applications. O The objective of this work was to compare the images of the MSI / Sentinel-2 sensors and the OLI / Landsat-8, using statistical parameters such as Pearson's coefficient, and analyzing its applications for geological mapping. For this, the bands were selected of both sensors and preprocessed to a compatible dataset for Comparation. Subsequently, the coefficients were generated between the pairs of correlated bands, and also band ratios for data analysis. Sentinel-2 images showed strong correlation with Landsat-8 images, with Pearson coefficients ranging from 0.857 to 0.930. With these results confirming the evenness between the sensors. Techniques of Digital Image Processing employed in Sentinel-2A images to enhance the lithologies from the Itataia region were: Band ratios, Optimal Index Factor (OIF), Independent Component Analysis (ICA), Minimum Noise Fraction (MNF), Analysis by Main Components (APC), RGB Composition, and Low Pass Filtering. The compositions RGB colors that best highlighted the lithologies of the study area and enhanced the colofanite (phosphorus-uranium ore) were with MNFs R (3) G (4) B (7) bands and with ICA bands R (6) G (5) B (3). Coupled with powerful PDI techniques, Sentinel-2A images satisfactory results in geological mapping application and mineral prospecting. |
id |
UFC-7_f043396f7e176a585215d30447e060fb |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/48865 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
Imagens sentinel-2a (msi) aplicadas ao mapeamento geológico, Região de Itataia, Santa Quitéria, CeSentinel-2a (msi) images applied to geological mapping, Itataia Region, Santa Quiteria, CeOptimal Index Factor (OIF)Independente Component Analysis (ICA)Minimum Noise Fraction (MNF)The phosphorus-uraniferous province of the Itataia region, object of this study, is located in the municipality of Santa Quitéria / CE and inserted in the geological context of Ceará Central Domain (DCC) of the Borborema Province (PB). It is a unique mineralization in the world where Its main ore is colofanite. Satellites equipped with multispectral sensors such as Landsat (TM, ETM +, OLI) series play an important role in geological applications. O The objective of this work was to compare the images of the MSI / Sentinel-2 sensors and the OLI / Landsat-8, using statistical parameters such as Pearson's coefficient, and analyzing its applications for geological mapping. For this, the bands were selected of both sensors and preprocessed to a compatible dataset for Comparation. Subsequently, the coefficients were generated between the pairs of correlated bands, and also band ratios for data analysis. Sentinel-2 images showed strong correlation with Landsat-8 images, with Pearson coefficients ranging from 0.857 to 0.930. With these results confirming the evenness between the sensors. Techniques of Digital Image Processing employed in Sentinel-2A images to enhance the lithologies from the Itataia region were: Band ratios, Optimal Index Factor (OIF), Independent Component Analysis (ICA), Minimum Noise Fraction (MNF), Analysis by Main Components (APC), RGB Composition, and Low Pass Filtering. The compositions RGB colors that best highlighted the lithologies of the study area and enhanced the colofanite (phosphorus-uranium ore) were with MNFs R (3) G (4) B (7) bands and with ICA bands R (6) G (5) B (3). Coupled with powerful PDI techniques, Sentinel-2A images satisfactory results in geological mapping application and mineral prospecting.A província fósforo-uranífera da região de Itataia, objeto deste estudo, está localizada no município de Santa Quitéria/CE e inserida no contexto geológico do Domínio Ceará Central (DCC) da Província Borborema (PB). Trata-se de uma mineralização única no mundo em que seu principal minério é o colofanito. Satélites equipados com sensores multiespectrais, como os da série Landsat (TM, ETM+, OLI), tem um importante papel em aplicações geológicas. O objetivo deste trabalho foi efetuar a comparação das imagens dos sensores MSI/Sentinel-2 e do OLI/Landsat-8, por meio de parâmetros estatísticos, como o coeficiente de Pearson, e analisar suas aplicações para o mapeamento geológico. Para tanto, foram selecionadas as bandas correlatas de ambos os sensores e pré-processadas para um conjunto de dados compatível para comparação. Posteriormente, foram gerados os coeficientes entre os pares de bandas correlatas, e também razões de bandas para análise dos dados. As imagens Sentinel-2 apresentaram forte correlação com as imagens Landsat-8, com coeficientes de Pearson variando entre 0,857 e 0,930. Com esses resultados confirmando a equiparidade entre os sensores. Técnicas de Processamento Digital de Imagens empregadas nas imagens Sentinel-2A, para realçar as litologias da região de Itataia, foram: Razões de banda, Optimal Index Factor (OIF), Independente Component Analysis (ICA), Minimum Noise Fraction (MNF), Análise por Componentes Principais (APC), Composição RGB e Filtragem Passa-Baixa. As composições coloridas RGB que melhor destacaram as litologias da área de estudo e realçaram o colofanito (minério fósforo-uranífero) foram com as bandas MNFs R (3) G (4) B (7) e com as bandas ICA R (6) G (5) B (3). Aliadas a poderosas técnicas de PDI as imagens Sentinel-2A apresentaram resultados satisfatórios em aplicação de mapeamento geológico e prospecção mineral.Duarte, Cynthia RomarizGomes, Daniel Dantas MoreiraMiranda, Mateus de Paula2019-12-18T16:52:28Z2019-12-18T16:52:28Z2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfMIRANDA, Mateus de Paula. Imagens sentinel-2a (msi) aplicadas ao mapeamento geológico, Região de Itataia, Santa Quitéria, Ce. 2019. 77 f. Dissertação (Mestrado em Geologia) - Universidade Federal do Ceará, Fortaleza, 2019.http://www.repositorio.ufc.br/handle/riufc/48865ark:/83112/00130000001h9porreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2019-12-18T16:52:55Zoai:repositorio.ufc.br:riufc/48865Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:40:12.491946Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Imagens sentinel-2a (msi) aplicadas ao mapeamento geológico, Região de Itataia, Santa Quitéria, Ce Sentinel-2a (msi) images applied to geological mapping, Itataia Region, Santa Quiteria, Ce |
title |
Imagens sentinel-2a (msi) aplicadas ao mapeamento geológico, Região de Itataia, Santa Quitéria, Ce |
spellingShingle |
Imagens sentinel-2a (msi) aplicadas ao mapeamento geológico, Região de Itataia, Santa Quitéria, Ce Miranda, Mateus de Paula Optimal Index Factor (OIF) Independente Component Analysis (ICA) Minimum Noise Fraction (MNF) |
title_short |
Imagens sentinel-2a (msi) aplicadas ao mapeamento geológico, Região de Itataia, Santa Quitéria, Ce |
title_full |
Imagens sentinel-2a (msi) aplicadas ao mapeamento geológico, Região de Itataia, Santa Quitéria, Ce |
title_fullStr |
Imagens sentinel-2a (msi) aplicadas ao mapeamento geológico, Região de Itataia, Santa Quitéria, Ce |
title_full_unstemmed |
Imagens sentinel-2a (msi) aplicadas ao mapeamento geológico, Região de Itataia, Santa Quitéria, Ce |
title_sort |
Imagens sentinel-2a (msi) aplicadas ao mapeamento geológico, Região de Itataia, Santa Quitéria, Ce |
author |
Miranda, Mateus de Paula |
author_facet |
Miranda, Mateus de Paula |
author_role |
author |
dc.contributor.none.fl_str_mv |
Duarte, Cynthia Romariz Gomes, Daniel Dantas Moreira |
dc.contributor.author.fl_str_mv |
Miranda, Mateus de Paula |
dc.subject.por.fl_str_mv |
Optimal Index Factor (OIF) Independente Component Analysis (ICA) Minimum Noise Fraction (MNF) |
topic |
Optimal Index Factor (OIF) Independente Component Analysis (ICA) Minimum Noise Fraction (MNF) |
description |
The phosphorus-uraniferous province of the Itataia region, object of this study, is located in the municipality of Santa Quitéria / CE and inserted in the geological context of Ceará Central Domain (DCC) of the Borborema Province (PB). It is a unique mineralization in the world where Its main ore is colofanite. Satellites equipped with multispectral sensors such as Landsat (TM, ETM +, OLI) series play an important role in geological applications. O The objective of this work was to compare the images of the MSI / Sentinel-2 sensors and the OLI / Landsat-8, using statistical parameters such as Pearson's coefficient, and analyzing its applications for geological mapping. For this, the bands were selected of both sensors and preprocessed to a compatible dataset for Comparation. Subsequently, the coefficients were generated between the pairs of correlated bands, and also band ratios for data analysis. Sentinel-2 images showed strong correlation with Landsat-8 images, with Pearson coefficients ranging from 0.857 to 0.930. With these results confirming the evenness between the sensors. Techniques of Digital Image Processing employed in Sentinel-2A images to enhance the lithologies from the Itataia region were: Band ratios, Optimal Index Factor (OIF), Independent Component Analysis (ICA), Minimum Noise Fraction (MNF), Analysis by Main Components (APC), RGB Composition, and Low Pass Filtering. The compositions RGB colors that best highlighted the lithologies of the study area and enhanced the colofanite (phosphorus-uranium ore) were with MNFs R (3) G (4) B (7) bands and with ICA bands R (6) G (5) B (3). Coupled with powerful PDI techniques, Sentinel-2A images satisfactory results in geological mapping application and mineral prospecting. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12-18T16:52:28Z 2019-12-18T16:52:28Z 2019 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
MIRANDA, Mateus de Paula. Imagens sentinel-2a (msi) aplicadas ao mapeamento geológico, Região de Itataia, Santa Quitéria, Ce. 2019. 77 f. Dissertação (Mestrado em Geologia) - Universidade Federal do Ceará, Fortaleza, 2019. http://www.repositorio.ufc.br/handle/riufc/48865 |
dc.identifier.dark.fl_str_mv |
ark:/83112/00130000001h9 |
identifier_str_mv |
MIRANDA, Mateus de Paula. Imagens sentinel-2a (msi) aplicadas ao mapeamento geológico, Região de Itataia, Santa Quitéria, Ce. 2019. 77 f. Dissertação (Mestrado em Geologia) - Universidade Federal do Ceará, Fortaleza, 2019. ark:/83112/00130000001h9 |
url |
http://www.repositorio.ufc.br/handle/riufc/48865 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1818373680219029504 |