Study of retroanalysis of asphalc pavements resilience modules with the use of arficial neural networks

Detalhes bibliográficos
Autor(a) principal: Celeste, Alcidney Batista
Data de Publicação: 2019
Outros Autores: Oliveira, Francisco Heber Lacerda de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/58382
Resumo: Knowledge of pavement Resilience Modules (RM) is an important element for the struc-tural assessment of existing infrastructures. One way to determine them is through dy-namic repeated load testing in the laboratory; another way is to use the technique of retroanalysis, which consists in obtaining the RM from the thickness of the layers and the deflec ons measured on the pavement surface. In this sense, this paper aims to present the RM retroanalysis through the technique of Ar ficial Neural Networks (ANN) as an alterna ve to the tradi onal retroanalysis. The results demonstrate that the ANN could predict the RM with results of coefficients of determina on (R²) above 99.9% be-tween the reference and predicted values. Thus, ANN are a poten al alterna ve to ob-tain this important mechanical property of paving materials compared to tradi onal methods.
id UFC-7_f2069fd3ccdca9566f2a84e23a5cc577
oai_identifier_str oai:repositorio.ufc.br:riufc/58382
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Study of retroanalysis of asphalc pavements resilience modules with the use of arficial neural networksPavimentos asfálticosRedes neurais artificiaisMódulo de resiliênciaRetroanáliseKnowledge of pavement Resilience Modules (RM) is an important element for the struc-tural assessment of existing infrastructures. One way to determine them is through dy-namic repeated load testing in the laboratory; another way is to use the technique of retroanalysis, which consists in obtaining the RM from the thickness of the layers and the deflec ons measured on the pavement surface. In this sense, this paper aims to present the RM retroanalysis through the technique of Ar ficial Neural Networks (ANN) as an alterna ve to the tradi onal retroanalysis. The results demonstrate that the ANN could predict the RM with results of coefficients of determina on (R²) above 99.9% be-tween the reference and predicted values. Thus, ANN are a poten al alterna ve to ob-tain this important mechanical property of paving materials compared to tradi onal methods.O conhecimento dos Módulos de Resiliência (MR) de pavimentos é elemento importante para a avaliação estrutural das infraestruturas existentes. Uma maneira de determiná-los é através de ensaios dinâmicos de carga repetida, em laboratório; outra forma, é utilizar a técnica de retroanálise, que consiste na obtenção dos MR a partir das espessuras das camadas e das deflexões medidas na superfície do pavimento. Nesse sentido, este artigo tem o objetivo de apresentar a retroanálise dos MR através da técnica de Redes Neurais Artificiais (RNA) como alternativa à retroanálise tradicional. Os resultados demonstraram que as RNA conseguem prever os MR com resultados de coeficientes de determinação (R2) acima de 99,9% entre os valores de referência e previstos. Desse modo, as RNA se apresentam como uma alternativa em potencial para a obtenção dessa importante propriedade mecânica dos materiais para pavimentação frente aos métodos tradicionais.2021-05-14T16:42:02Z2021-05-14T16:42:02Z2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfCELESTE, Alcidney Batista; OLIVEIRA, Francisco Heber Lacerda de. Study of retroanalysis of asphalc pavements resilience modules with the use of arficial neural networks. Transportes, São Paulo-SP, v. 27, n. 4, p. 1-13, 2019.2237-1346DOI:10.14295/transportes.v27i4.1781http://www.repositorio.ufc.br/handle/riufc/58382Celeste, Alcidney BatistaOliveira, Francisco Heber Lacerda deengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2022-02-02T14:11:02Zoai:repositorio.ufc.br:riufc/58382Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:59:48.677859Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv Study of retroanalysis of asphalc pavements resilience modules with the use of arficial neural networks
title Study of retroanalysis of asphalc pavements resilience modules with the use of arficial neural networks
spellingShingle Study of retroanalysis of asphalc pavements resilience modules with the use of arficial neural networks
Celeste, Alcidney Batista
Pavimentos asfálticos
Redes neurais artificiais
Módulo de resiliência
Retroanálise
title_short Study of retroanalysis of asphalc pavements resilience modules with the use of arficial neural networks
title_full Study of retroanalysis of asphalc pavements resilience modules with the use of arficial neural networks
title_fullStr Study of retroanalysis of asphalc pavements resilience modules with the use of arficial neural networks
title_full_unstemmed Study of retroanalysis of asphalc pavements resilience modules with the use of arficial neural networks
title_sort Study of retroanalysis of asphalc pavements resilience modules with the use of arficial neural networks
author Celeste, Alcidney Batista
author_facet Celeste, Alcidney Batista
Oliveira, Francisco Heber Lacerda de
author_role author
author2 Oliveira, Francisco Heber Lacerda de
author2_role author
dc.contributor.author.fl_str_mv Celeste, Alcidney Batista
Oliveira, Francisco Heber Lacerda de
dc.subject.por.fl_str_mv Pavimentos asfálticos
Redes neurais artificiais
Módulo de resiliência
Retroanálise
topic Pavimentos asfálticos
Redes neurais artificiais
Módulo de resiliência
Retroanálise
description Knowledge of pavement Resilience Modules (RM) is an important element for the struc-tural assessment of existing infrastructures. One way to determine them is through dy-namic repeated load testing in the laboratory; another way is to use the technique of retroanalysis, which consists in obtaining the RM from the thickness of the layers and the deflec ons measured on the pavement surface. In this sense, this paper aims to present the RM retroanalysis through the technique of Ar ficial Neural Networks (ANN) as an alterna ve to the tradi onal retroanalysis. The results demonstrate that the ANN could predict the RM with results of coefficients of determina on (R²) above 99.9% be-tween the reference and predicted values. Thus, ANN are a poten al alterna ve to ob-tain this important mechanical property of paving materials compared to tradi onal methods.
publishDate 2019
dc.date.none.fl_str_mv 2019
2021-05-14T16:42:02Z
2021-05-14T16:42:02Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv CELESTE, Alcidney Batista; OLIVEIRA, Francisco Heber Lacerda de. Study of retroanalysis of asphalc pavements resilience modules with the use of arficial neural networks. Transportes, São Paulo-SP, v. 27, n. 4, p. 1-13, 2019.
2237-1346
DOI:10.14295/transportes.v27i4.1781
http://www.repositorio.ufc.br/handle/riufc/58382
identifier_str_mv CELESTE, Alcidney Batista; OLIVEIRA, Francisco Heber Lacerda de. Study of retroanalysis of asphalc pavements resilience modules with the use of arficial neural networks. Transportes, São Paulo-SP, v. 27, n. 4, p. 1-13, 2019.
2237-1346
DOI:10.14295/transportes.v27i4.1781
url http://www.repositorio.ufc.br/handle/riufc/58382
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1813029026811346944