Study of retroanalysis of asphalc pavements resilience modules with the use of arficial neural networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/58382 |
Resumo: | Knowledge of pavement Resilience Modules (RM) is an important element for the struc-tural assessment of existing infrastructures. One way to determine them is through dy-namic repeated load testing in the laboratory; another way is to use the technique of retroanalysis, which consists in obtaining the RM from the thickness of the layers and the deflec ons measured on the pavement surface. In this sense, this paper aims to present the RM retroanalysis through the technique of Ar ficial Neural Networks (ANN) as an alterna ve to the tradi onal retroanalysis. The results demonstrate that the ANN could predict the RM with results of coefficients of determina on (R²) above 99.9% be-tween the reference and predicted values. Thus, ANN are a poten al alterna ve to ob-tain this important mechanical property of paving materials compared to tradi onal methods. |
id |
UFC-7_f2069fd3ccdca9566f2a84e23a5cc577 |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/58382 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
Study of retroanalysis of asphalc pavements resilience modules with the use of arficial neural networksPavimentos asfálticosRedes neurais artificiaisMódulo de resiliênciaRetroanáliseKnowledge of pavement Resilience Modules (RM) is an important element for the struc-tural assessment of existing infrastructures. One way to determine them is through dy-namic repeated load testing in the laboratory; another way is to use the technique of retroanalysis, which consists in obtaining the RM from the thickness of the layers and the deflec ons measured on the pavement surface. In this sense, this paper aims to present the RM retroanalysis through the technique of Ar ficial Neural Networks (ANN) as an alterna ve to the tradi onal retroanalysis. The results demonstrate that the ANN could predict the RM with results of coefficients of determina on (R²) above 99.9% be-tween the reference and predicted values. Thus, ANN are a poten al alterna ve to ob-tain this important mechanical property of paving materials compared to tradi onal methods.O conhecimento dos Módulos de Resiliência (MR) de pavimentos é elemento importante para a avaliação estrutural das infraestruturas existentes. Uma maneira de determiná-los é através de ensaios dinâmicos de carga repetida, em laboratório; outra forma, é utilizar a técnica de retroanálise, que consiste na obtenção dos MR a partir das espessuras das camadas e das deflexões medidas na superfície do pavimento. Nesse sentido, este artigo tem o objetivo de apresentar a retroanálise dos MR através da técnica de Redes Neurais Artificiais (RNA) como alternativa à retroanálise tradicional. Os resultados demonstraram que as RNA conseguem prever os MR com resultados de coeficientes de determinação (R2) acima de 99,9% entre os valores de referência e previstos. Desse modo, as RNA se apresentam como uma alternativa em potencial para a obtenção dessa importante propriedade mecânica dos materiais para pavimentação frente aos métodos tradicionais.2021-05-14T16:42:02Z2021-05-14T16:42:02Z2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfCELESTE, Alcidney Batista; OLIVEIRA, Francisco Heber Lacerda de. Study of retroanalysis of asphalc pavements resilience modules with the use of arficial neural networks. Transportes, São Paulo-SP, v. 27, n. 4, p. 1-13, 2019.2237-1346DOI:10.14295/transportes.v27i4.1781http://www.repositorio.ufc.br/handle/riufc/58382Celeste, Alcidney BatistaOliveira, Francisco Heber Lacerda deengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2022-02-02T14:11:02Zoai:repositorio.ufc.br:riufc/58382Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:59:48.677859Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Study of retroanalysis of asphalc pavements resilience modules with the use of arficial neural networks |
title |
Study of retroanalysis of asphalc pavements resilience modules with the use of arficial neural networks |
spellingShingle |
Study of retroanalysis of asphalc pavements resilience modules with the use of arficial neural networks Celeste, Alcidney Batista Pavimentos asfálticos Redes neurais artificiais Módulo de resiliência Retroanálise |
title_short |
Study of retroanalysis of asphalc pavements resilience modules with the use of arficial neural networks |
title_full |
Study of retroanalysis of asphalc pavements resilience modules with the use of arficial neural networks |
title_fullStr |
Study of retroanalysis of asphalc pavements resilience modules with the use of arficial neural networks |
title_full_unstemmed |
Study of retroanalysis of asphalc pavements resilience modules with the use of arficial neural networks |
title_sort |
Study of retroanalysis of asphalc pavements resilience modules with the use of arficial neural networks |
author |
Celeste, Alcidney Batista |
author_facet |
Celeste, Alcidney Batista Oliveira, Francisco Heber Lacerda de |
author_role |
author |
author2 |
Oliveira, Francisco Heber Lacerda de |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Celeste, Alcidney Batista Oliveira, Francisco Heber Lacerda de |
dc.subject.por.fl_str_mv |
Pavimentos asfálticos Redes neurais artificiais Módulo de resiliência Retroanálise |
topic |
Pavimentos asfálticos Redes neurais artificiais Módulo de resiliência Retroanálise |
description |
Knowledge of pavement Resilience Modules (RM) is an important element for the struc-tural assessment of existing infrastructures. One way to determine them is through dy-namic repeated load testing in the laboratory; another way is to use the technique of retroanalysis, which consists in obtaining the RM from the thickness of the layers and the deflec ons measured on the pavement surface. In this sense, this paper aims to present the RM retroanalysis through the technique of Ar ficial Neural Networks (ANN) as an alterna ve to the tradi onal retroanalysis. The results demonstrate that the ANN could predict the RM with results of coefficients of determina on (R²) above 99.9% be-tween the reference and predicted values. Thus, ANN are a poten al alterna ve to ob-tain this important mechanical property of paving materials compared to tradi onal methods. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 2021-05-14T16:42:02Z 2021-05-14T16:42:02Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
CELESTE, Alcidney Batista; OLIVEIRA, Francisco Heber Lacerda de. Study of retroanalysis of asphalc pavements resilience modules with the use of arficial neural networks. Transportes, São Paulo-SP, v. 27, n. 4, p. 1-13, 2019. 2237-1346 DOI:10.14295/transportes.v27i4.1781 http://www.repositorio.ufc.br/handle/riufc/58382 |
identifier_str_mv |
CELESTE, Alcidney Batista; OLIVEIRA, Francisco Heber Lacerda de. Study of retroanalysis of asphalc pavements resilience modules with the use of arficial neural networks. Transportes, São Paulo-SP, v. 27, n. 4, p. 1-13, 2019. 2237-1346 DOI:10.14295/transportes.v27i4.1781 |
url |
http://www.repositorio.ufc.br/handle/riufc/58382 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813029026811346944 |