Competitive and temporal Hebbian learning for production of robot trajectories

Detalhes bibliográficos
Autor(a) principal: Barreto, Guilherme de Alencar
Data de Publicação: 1998
Outros Autores: Araújo, Aluízio Fausto Ribeiro
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/70713
Resumo: This paper proposes an unsupervised neural algorithm for trajectory production of a 6-DOF robotic arm. The model encodes these trajectories in a single training iteration by using competitive and temporal Hebbian learning rules and operates by producing the current and the next position for the robotic arm. In this paper we will focus on trajectories with at least one common point. These types of trajectories introduce some ambiguities, but even so, the neural algorithm is able to reproduce them accurately and unambiguously due to context units used as part of the input. In addition, the proposed model is shown to be fault-tolerant.
id UFC-7_f7e6d4f3feec83101f76365c877fe2d7
oai_identifier_str oai:repositorio.ufc.br:riufc/70713
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Competitive and temporal Hebbian learning for production of robot trajectoriesThis paper proposes an unsupervised neural algorithm for trajectory production of a 6-DOF robotic arm. The model encodes these trajectories in a single training iteration by using competitive and temporal Hebbian learning rules and operates by producing the current and the next position for the robotic arm. In this paper we will focus on trajectories with at least one common point. These types of trajectories introduce some ambiguities, but even so, the neural algorithm is able to reproduce them accurately and unambiguously due to context units used as part of the input. In addition, the proposed model is shown to be fault-tolerant.Brazilian Symposium on Neural Networks2023-02-09T16:53:47Z2023-02-09T16:53:47Z1998info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectapplication/pdfBARRETO, G. A.; ARAÚJO, A. F. R. Competitive and temporal Hebbian learning for production of robot trajectories. In: BRAZILIAN SYMPOSIUM ON NEURAL NETWORKS, 5., 1998, Belo Horizonte. Anais... Belo Horizonte: IEEE, 1998. p. 1-6.http://www.repositorio.ufc.br/handle/riufc/70713Barreto, Guilherme de AlencarAraújo, Aluízio Fausto Ribeiroengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2023-02-09T16:53:47Zoai:repositorio.ufc.br:riufc/70713Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:31:14.631619Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv Competitive and temporal Hebbian learning for production of robot trajectories
title Competitive and temporal Hebbian learning for production of robot trajectories
spellingShingle Competitive and temporal Hebbian learning for production of robot trajectories
Barreto, Guilherme de Alencar
title_short Competitive and temporal Hebbian learning for production of robot trajectories
title_full Competitive and temporal Hebbian learning for production of robot trajectories
title_fullStr Competitive and temporal Hebbian learning for production of robot trajectories
title_full_unstemmed Competitive and temporal Hebbian learning for production of robot trajectories
title_sort Competitive and temporal Hebbian learning for production of robot trajectories
author Barreto, Guilherme de Alencar
author_facet Barreto, Guilherme de Alencar
Araújo, Aluízio Fausto Ribeiro
author_role author
author2 Araújo, Aluízio Fausto Ribeiro
author2_role author
dc.contributor.author.fl_str_mv Barreto, Guilherme de Alencar
Araújo, Aluízio Fausto Ribeiro
description This paper proposes an unsupervised neural algorithm for trajectory production of a 6-DOF robotic arm. The model encodes these trajectories in a single training iteration by using competitive and temporal Hebbian learning rules and operates by producing the current and the next position for the robotic arm. In this paper we will focus on trajectories with at least one common point. These types of trajectories introduce some ambiguities, but even so, the neural algorithm is able to reproduce them accurately and unambiguously due to context units used as part of the input. In addition, the proposed model is shown to be fault-tolerant.
publishDate 1998
dc.date.none.fl_str_mv 1998
2023-02-09T16:53:47Z
2023-02-09T16:53:47Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv BARRETO, G. A.; ARAÚJO, A. F. R. Competitive and temporal Hebbian learning for production of robot trajectories. In: BRAZILIAN SYMPOSIUM ON NEURAL NETWORKS, 5., 1998, Belo Horizonte. Anais... Belo Horizonte: IEEE, 1998. p. 1-6.
http://www.repositorio.ufc.br/handle/riufc/70713
identifier_str_mv BARRETO, G. A.; ARAÚJO, A. F. R. Competitive and temporal Hebbian learning for production of robot trajectories. In: BRAZILIAN SYMPOSIUM ON NEURAL NETWORKS, 5., 1998, Belo Horizonte. Anais... Belo Horizonte: IEEE, 1998. p. 1-6.
url http://www.repositorio.ufc.br/handle/riufc/70713
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Brazilian Symposium on Neural Networks
publisher.none.fl_str_mv Brazilian Symposium on Neural Networks
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1813028838706249728