Competitive and temporal Hebbian learning for production of robot trajectories
Autor(a) principal: | |
---|---|
Data de Publicação: | 1998 |
Outros Autores: | |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/70713 |
Resumo: | This paper proposes an unsupervised neural algorithm for trajectory production of a 6-DOF robotic arm. The model encodes these trajectories in a single training iteration by using competitive and temporal Hebbian learning rules and operates by producing the current and the next position for the robotic arm. In this paper we will focus on trajectories with at least one common point. These types of trajectories introduce some ambiguities, but even so, the neural algorithm is able to reproduce them accurately and unambiguously due to context units used as part of the input. In addition, the proposed model is shown to be fault-tolerant. |
id |
UFC-7_f7e6d4f3feec83101f76365c877fe2d7 |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/70713 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
Competitive and temporal Hebbian learning for production of robot trajectoriesThis paper proposes an unsupervised neural algorithm for trajectory production of a 6-DOF robotic arm. The model encodes these trajectories in a single training iteration by using competitive and temporal Hebbian learning rules and operates by producing the current and the next position for the robotic arm. In this paper we will focus on trajectories with at least one common point. These types of trajectories introduce some ambiguities, but even so, the neural algorithm is able to reproduce them accurately and unambiguously due to context units used as part of the input. In addition, the proposed model is shown to be fault-tolerant.Brazilian Symposium on Neural Networks2023-02-09T16:53:47Z2023-02-09T16:53:47Z1998info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectapplication/pdfBARRETO, G. A.; ARAÚJO, A. F. R. Competitive and temporal Hebbian learning for production of robot trajectories. In: BRAZILIAN SYMPOSIUM ON NEURAL NETWORKS, 5., 1998, Belo Horizonte. Anais... Belo Horizonte: IEEE, 1998. p. 1-6.http://www.repositorio.ufc.br/handle/riufc/70713Barreto, Guilherme de AlencarAraújo, Aluízio Fausto Ribeiroengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2023-02-09T16:53:47Zoai:repositorio.ufc.br:riufc/70713Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:31:14.631619Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Competitive and temporal Hebbian learning for production of robot trajectories |
title |
Competitive and temporal Hebbian learning for production of robot trajectories |
spellingShingle |
Competitive and temporal Hebbian learning for production of robot trajectories Barreto, Guilherme de Alencar |
title_short |
Competitive and temporal Hebbian learning for production of robot trajectories |
title_full |
Competitive and temporal Hebbian learning for production of robot trajectories |
title_fullStr |
Competitive and temporal Hebbian learning for production of robot trajectories |
title_full_unstemmed |
Competitive and temporal Hebbian learning for production of robot trajectories |
title_sort |
Competitive and temporal Hebbian learning for production of robot trajectories |
author |
Barreto, Guilherme de Alencar |
author_facet |
Barreto, Guilherme de Alencar Araújo, Aluízio Fausto Ribeiro |
author_role |
author |
author2 |
Araújo, Aluízio Fausto Ribeiro |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Barreto, Guilherme de Alencar Araújo, Aluízio Fausto Ribeiro |
description |
This paper proposes an unsupervised neural algorithm for trajectory production of a 6-DOF robotic arm. The model encodes these trajectories in a single training iteration by using competitive and temporal Hebbian learning rules and operates by producing the current and the next position for the robotic arm. In this paper we will focus on trajectories with at least one common point. These types of trajectories introduce some ambiguities, but even so, the neural algorithm is able to reproduce them accurately and unambiguously due to context units used as part of the input. In addition, the proposed model is shown to be fault-tolerant. |
publishDate |
1998 |
dc.date.none.fl_str_mv |
1998 2023-02-09T16:53:47Z 2023-02-09T16:53:47Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
BARRETO, G. A.; ARAÚJO, A. F. R. Competitive and temporal Hebbian learning for production of robot trajectories. In: BRAZILIAN SYMPOSIUM ON NEURAL NETWORKS, 5., 1998, Belo Horizonte. Anais... Belo Horizonte: IEEE, 1998. p. 1-6. http://www.repositorio.ufc.br/handle/riufc/70713 |
identifier_str_mv |
BARRETO, G. A.; ARAÚJO, A. F. R. Competitive and temporal Hebbian learning for production of robot trajectories. In: BRAZILIAN SYMPOSIUM ON NEURAL NETWORKS, 5., 1998, Belo Horizonte. Anais... Belo Horizonte: IEEE, 1998. p. 1-6. |
url |
http://www.repositorio.ufc.br/handle/riufc/70713 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Brazilian Symposium on Neural Networks |
publisher.none.fl_str_mv |
Brazilian Symposium on Neural Networks |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813028838706249728 |