Kriging-based optimization of functionally graded structures
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | https://doi.org/10.1007/s00158-021-02949-5 http://www.repositorio.ufc.br/handle/riufc/61913 |
Resumo: | This work presents an efficient methodology for the optimum design of functionally graded structures using a Krigingbased approach. The method combines an adaptive Kriging framework with a hybrid particle swarm optimization (PSO) algorithm to improve the computational efficiency of the optimization process. In this approach, the surrogate model is used to replace the high-fidelity structural responses obtained by a NURBS-based isogeometric analysis. In addition, the impact of key factors on surrogate modelling, as the correlation function, the infill criterion used to update the surrogate model, and the constraint handling is assessed for accuracy, efficiency, and robustness. The design variables are related to the volume fraction distribution and the thickness. Displacement, fundamental frequency, buckling load, mass, and ceramic volume fraction are used as objective functions or constraints. The effectiveness and accuracy of the proposed algorithm are illustrated through a set of numerical examples. Results show a significant reduction in the computational effort over the conventional approach. |
id |
UFC-7_f95b37eeae292791d4980a6f2e6f2367 |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/61913 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
Kriging-based optimization of functionally graded structuresKrigingFunctionally graded materialsSequential approximate optimizationIsogeometric analysisThis work presents an efficient methodology for the optimum design of functionally graded structures using a Krigingbased approach. The method combines an adaptive Kriging framework with a hybrid particle swarm optimization (PSO) algorithm to improve the computational efficiency of the optimization process. In this approach, the surrogate model is used to replace the high-fidelity structural responses obtained by a NURBS-based isogeometric analysis. In addition, the impact of key factors on surrogate modelling, as the correlation function, the infill criterion used to update the surrogate model, and the constraint handling is assessed for accuracy, efficiency, and robustness. The design variables are related to the volume fraction distribution and the thickness. Displacement, fundamental frequency, buckling load, mass, and ceramic volume fraction are used as objective functions or constraints. The effectiveness and accuracy of the proposed algorithm are illustrated through a set of numerical examples. Results show a significant reduction in the computational effort over the conventional approach.https://www.springer.com/journal/158/2021-11-09T17:35:50Z2021-11-09T17:35:50Z2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfMAIA, Marina Alves; PARENTE JUNIOR, Evandro; MELO, Antônio Macário Cartaxo de. Kriging-based optimization of functionally graded structures. Structural and Multidisciplinary Optimization, v. 64, p.1887-1908, 2021.1615-1488 online1615-147X Printhttps://doi.org/10.1007/s00158-021-02949-5http://www.repositorio.ufc.br/handle/riufc/61913Maia, Marina AlvesParente Junior, EvandroMelo, Antônio Macário Cartaxo deinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFC2023-12-06T14:07:33Zoai:repositorio.ufc.br:riufc/61913Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:21:04.876557Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Kriging-based optimization of functionally graded structures |
title |
Kriging-based optimization of functionally graded structures |
spellingShingle |
Kriging-based optimization of functionally graded structures Maia, Marina Alves Kriging Functionally graded materials Sequential approximate optimization Isogeometric analysis |
title_short |
Kriging-based optimization of functionally graded structures |
title_full |
Kriging-based optimization of functionally graded structures |
title_fullStr |
Kriging-based optimization of functionally graded structures |
title_full_unstemmed |
Kriging-based optimization of functionally graded structures |
title_sort |
Kriging-based optimization of functionally graded structures |
author |
Maia, Marina Alves |
author_facet |
Maia, Marina Alves Parente Junior, Evandro Melo, Antônio Macário Cartaxo de |
author_role |
author |
author2 |
Parente Junior, Evandro Melo, Antônio Macário Cartaxo de |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Maia, Marina Alves Parente Junior, Evandro Melo, Antônio Macário Cartaxo de |
dc.subject.por.fl_str_mv |
Kriging Functionally graded materials Sequential approximate optimization Isogeometric analysis |
topic |
Kriging Functionally graded materials Sequential approximate optimization Isogeometric analysis |
description |
This work presents an efficient methodology for the optimum design of functionally graded structures using a Krigingbased approach. The method combines an adaptive Kriging framework with a hybrid particle swarm optimization (PSO) algorithm to improve the computational efficiency of the optimization process. In this approach, the surrogate model is used to replace the high-fidelity structural responses obtained by a NURBS-based isogeometric analysis. In addition, the impact of key factors on surrogate modelling, as the correlation function, the infill criterion used to update the surrogate model, and the constraint handling is assessed for accuracy, efficiency, and robustness. The design variables are related to the volume fraction distribution and the thickness. Displacement, fundamental frequency, buckling load, mass, and ceramic volume fraction are used as objective functions or constraints. The effectiveness and accuracy of the proposed algorithm are illustrated through a set of numerical examples. Results show a significant reduction in the computational effort over the conventional approach. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11-09T17:35:50Z 2021-11-09T17:35:50Z 2021 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
MAIA, Marina Alves; PARENTE JUNIOR, Evandro; MELO, Antônio Macário Cartaxo de. Kriging-based optimization of functionally graded structures. Structural and Multidisciplinary Optimization, v. 64, p.1887-1908, 2021. 1615-1488 online 1615-147X Print https://doi.org/10.1007/s00158-021-02949-5 http://www.repositorio.ufc.br/handle/riufc/61913 |
identifier_str_mv |
MAIA, Marina Alves; PARENTE JUNIOR, Evandro; MELO, Antônio Macário Cartaxo de. Kriging-based optimization of functionally graded structures. Structural and Multidisciplinary Optimization, v. 64, p.1887-1908, 2021. 1615-1488 online 1615-147X Print |
url |
https://doi.org/10.1007/s00158-021-02949-5 http://www.repositorio.ufc.br/handle/riufc/61913 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
https://www.springer.com/journal/158/ |
publisher.none.fl_str_mv |
https://www.springer.com/journal/158/ |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813028766967922688 |