Kriging-based optimization of functionally graded structures

Detalhes bibliográficos
Autor(a) principal: Maia, Marina Alves
Data de Publicação: 2021
Outros Autores: Parente Junior, Evandro, Melo, Antônio Macário Cartaxo de
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: https://doi.org/10.1007/s00158-021-02949-5
http://www.repositorio.ufc.br/handle/riufc/61913
Resumo: This work presents an efficient methodology for the optimum design of functionally graded structures using a Krigingbased approach. The method combines an adaptive Kriging framework with a hybrid particle swarm optimization (PSO) algorithm to improve the computational efficiency of the optimization process. In this approach, the surrogate model is used to replace the high-fidelity structural responses obtained by a NURBS-based isogeometric analysis. In addition, the impact of key factors on surrogate modelling, as the correlation function, the infill criterion used to update the surrogate model, and the constraint handling is assessed for accuracy, efficiency, and robustness. The design variables are related to the volume fraction distribution and the thickness. Displacement, fundamental frequency, buckling load, mass, and ceramic volume fraction are used as objective functions or constraints. The effectiveness and accuracy of the proposed algorithm are illustrated through a set of numerical examples. Results show a significant reduction in the computational effort over the conventional approach.
id UFC-7_f95b37eeae292791d4980a6f2e6f2367
oai_identifier_str oai:repositorio.ufc.br:riufc/61913
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Kriging-based optimization of functionally graded structuresKrigingFunctionally graded materialsSequential approximate optimizationIsogeometric analysisThis work presents an efficient methodology for the optimum design of functionally graded structures using a Krigingbased approach. The method combines an adaptive Kriging framework with a hybrid particle swarm optimization (PSO) algorithm to improve the computational efficiency of the optimization process. In this approach, the surrogate model is used to replace the high-fidelity structural responses obtained by a NURBS-based isogeometric analysis. In addition, the impact of key factors on surrogate modelling, as the correlation function, the infill criterion used to update the surrogate model, and the constraint handling is assessed for accuracy, efficiency, and robustness. The design variables are related to the volume fraction distribution and the thickness. Displacement, fundamental frequency, buckling load, mass, and ceramic volume fraction are used as objective functions or constraints. The effectiveness and accuracy of the proposed algorithm are illustrated through a set of numerical examples. Results show a significant reduction in the computational effort over the conventional approach.https://www.springer.com/journal/158/2021-11-09T17:35:50Z2021-11-09T17:35:50Z2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfMAIA, Marina Alves; PARENTE JUNIOR, Evandro; MELO, Antônio Macário Cartaxo de. Kriging-based optimization of functionally graded structures. Structural and Multidisciplinary Optimization, v. 64, p.1887-1908, 2021.1615-1488 online1615-147X Printhttps://doi.org/10.1007/s00158-021-02949-5http://www.repositorio.ufc.br/handle/riufc/61913Maia, Marina AlvesParente Junior, EvandroMelo, Antônio Macário Cartaxo deinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFC2023-12-06T14:07:33Zoai:repositorio.ufc.br:riufc/61913Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:21:04.876557Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv Kriging-based optimization of functionally graded structures
title Kriging-based optimization of functionally graded structures
spellingShingle Kriging-based optimization of functionally graded structures
Maia, Marina Alves
Kriging
Functionally graded materials
Sequential approximate optimization
Isogeometric analysis
title_short Kriging-based optimization of functionally graded structures
title_full Kriging-based optimization of functionally graded structures
title_fullStr Kriging-based optimization of functionally graded structures
title_full_unstemmed Kriging-based optimization of functionally graded structures
title_sort Kriging-based optimization of functionally graded structures
author Maia, Marina Alves
author_facet Maia, Marina Alves
Parente Junior, Evandro
Melo, Antônio Macário Cartaxo de
author_role author
author2 Parente Junior, Evandro
Melo, Antônio Macário Cartaxo de
author2_role author
author
dc.contributor.author.fl_str_mv Maia, Marina Alves
Parente Junior, Evandro
Melo, Antônio Macário Cartaxo de
dc.subject.por.fl_str_mv Kriging
Functionally graded materials
Sequential approximate optimization
Isogeometric analysis
topic Kriging
Functionally graded materials
Sequential approximate optimization
Isogeometric analysis
description This work presents an efficient methodology for the optimum design of functionally graded structures using a Krigingbased approach. The method combines an adaptive Kriging framework with a hybrid particle swarm optimization (PSO) algorithm to improve the computational efficiency of the optimization process. In this approach, the surrogate model is used to replace the high-fidelity structural responses obtained by a NURBS-based isogeometric analysis. In addition, the impact of key factors on surrogate modelling, as the correlation function, the infill criterion used to update the surrogate model, and the constraint handling is assessed for accuracy, efficiency, and robustness. The design variables are related to the volume fraction distribution and the thickness. Displacement, fundamental frequency, buckling load, mass, and ceramic volume fraction are used as objective functions or constraints. The effectiveness and accuracy of the proposed algorithm are illustrated through a set of numerical examples. Results show a significant reduction in the computational effort over the conventional approach.
publishDate 2021
dc.date.none.fl_str_mv 2021-11-09T17:35:50Z
2021-11-09T17:35:50Z
2021
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv MAIA, Marina Alves; PARENTE JUNIOR, Evandro; MELO, Antônio Macário Cartaxo de. Kriging-based optimization of functionally graded structures. Structural and Multidisciplinary Optimization, v. 64, p.1887-1908, 2021.
1615-1488 online
1615-147X Print
https://doi.org/10.1007/s00158-021-02949-5
http://www.repositorio.ufc.br/handle/riufc/61913
identifier_str_mv MAIA, Marina Alves; PARENTE JUNIOR, Evandro; MELO, Antônio Macário Cartaxo de. Kriging-based optimization of functionally graded structures. Structural and Multidisciplinary Optimization, v. 64, p.1887-1908, 2021.
1615-1488 online
1615-147X Print
url https://doi.org/10.1007/s00158-021-02949-5
http://www.repositorio.ufc.br/handle/riufc/61913
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv https://www.springer.com/journal/158/
publisher.none.fl_str_mv https://www.springer.com/journal/158/
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1813028766967922688