Tomato quality based on colorimetric characteristics of digital images

Detalhes bibliográficos
Autor(a) principal: Bello,Thaísa B.
Data de Publicação: 2020
Outros Autores: Costa,Anderson G., Silva,Thainara R. da, Paes,Juliana L., Oliveira,Marcus V. M. de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662020000800567
Resumo: ABSTRACT Results of evaluations using optical evaluation methods may be correlated with tomato quality and maturation. In this context, the objective of this study was to evaluated the correlation between tomato colorimetric and physico-chemical variables, clustering them as a function of maturation stages, using multivariate analysis. The experiment was conducted using 150 fruits and three maturation stages (immature, light red and mature). The physico-chemical variables were evaluated through traditional methods. The colorimetric variables were assessed on images in RGB color model taken with a digital camera. The correlation between colorimetric and physico-chemical variables was analyzed using the Pearson’s coefficient. Principal components analysis and k-means clustering method was applied to three data set: RGB isolated variables; colorimetric variables calculated by relation between the RGB bands (colorimetric indexes); and physico-chemical variables. The colorimetric variables present higher explanatory capacity of the maturation variation than physico-chemical variables. The colorimetric indexes presented higher performance in clustering (accuracy of 0.98) tomatoes as a function of maturation.
id UFCG-1_0abb53332da4f6de44428ca4c1241ffb
oai_identifier_str oai:scielo:S1415-43662020000800567
network_acronym_str UFCG-1
network_name_str Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
repository_id_str
spelling Tomato quality based on colorimetric characteristics of digital imagesLicopersicum esculentumartificial vision systemsRGB modelABSTRACT Results of evaluations using optical evaluation methods may be correlated with tomato quality and maturation. In this context, the objective of this study was to evaluated the correlation between tomato colorimetric and physico-chemical variables, clustering them as a function of maturation stages, using multivariate analysis. The experiment was conducted using 150 fruits and three maturation stages (immature, light red and mature). The physico-chemical variables were evaluated through traditional methods. The colorimetric variables were assessed on images in RGB color model taken with a digital camera. The correlation between colorimetric and physico-chemical variables was analyzed using the Pearson’s coefficient. Principal components analysis and k-means clustering method was applied to three data set: RGB isolated variables; colorimetric variables calculated by relation between the RGB bands (colorimetric indexes); and physico-chemical variables. The colorimetric variables present higher explanatory capacity of the maturation variation than physico-chemical variables. The colorimetric indexes presented higher performance in clustering (accuracy of 0.98) tomatoes as a function of maturation.Departamento de Engenharia Agrícola - UFCG2020-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662020000800567Revista Brasileira de Engenharia Agrícola e Ambiental v.24 n.8 2020reponame:Revista Brasileira de Engenharia Agrícola e Ambiental (Online)instname:Universidade Federal de Campina Grande (UFCG)instacron:UFCG10.1590/1807-1929/agriambi.v24n8p567-572info:eu-repo/semantics/openAccessBello,Thaísa B.Costa,Anderson G.Silva,Thainara R. daPaes,Juliana L.Oliveira,Marcus V. M. deeng2020-07-28T00:00:00Zoai:scielo:S1415-43662020000800567Revistahttp://www.scielo.br/rbeaaPUBhttps://old.scielo.br/oai/scielo-oai.php||agriambi@agriambi.com.br1807-19291415-4366opendoar:2020-07-28T00:00Revista Brasileira de Engenharia Agrícola e Ambiental (Online) - Universidade Federal de Campina Grande (UFCG)false
dc.title.none.fl_str_mv Tomato quality based on colorimetric characteristics of digital images
title Tomato quality based on colorimetric characteristics of digital images
spellingShingle Tomato quality based on colorimetric characteristics of digital images
Bello,Thaísa B.
Licopersicum esculentum
artificial vision systems
RGB model
title_short Tomato quality based on colorimetric characteristics of digital images
title_full Tomato quality based on colorimetric characteristics of digital images
title_fullStr Tomato quality based on colorimetric characteristics of digital images
title_full_unstemmed Tomato quality based on colorimetric characteristics of digital images
title_sort Tomato quality based on colorimetric characteristics of digital images
author Bello,Thaísa B.
author_facet Bello,Thaísa B.
Costa,Anderson G.
Silva,Thainara R. da
Paes,Juliana L.
Oliveira,Marcus V. M. de
author_role author
author2 Costa,Anderson G.
Silva,Thainara R. da
Paes,Juliana L.
Oliveira,Marcus V. M. de
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Bello,Thaísa B.
Costa,Anderson G.
Silva,Thainara R. da
Paes,Juliana L.
Oliveira,Marcus V. M. de
dc.subject.por.fl_str_mv Licopersicum esculentum
artificial vision systems
RGB model
topic Licopersicum esculentum
artificial vision systems
RGB model
description ABSTRACT Results of evaluations using optical evaluation methods may be correlated with tomato quality and maturation. In this context, the objective of this study was to evaluated the correlation between tomato colorimetric and physico-chemical variables, clustering them as a function of maturation stages, using multivariate analysis. The experiment was conducted using 150 fruits and three maturation stages (immature, light red and mature). The physico-chemical variables were evaluated through traditional methods. The colorimetric variables were assessed on images in RGB color model taken with a digital camera. The correlation between colorimetric and physico-chemical variables was analyzed using the Pearson’s coefficient. Principal components analysis and k-means clustering method was applied to three data set: RGB isolated variables; colorimetric variables calculated by relation between the RGB bands (colorimetric indexes); and physico-chemical variables. The colorimetric variables present higher explanatory capacity of the maturation variation than physico-chemical variables. The colorimetric indexes presented higher performance in clustering (accuracy of 0.98) tomatoes as a function of maturation.
publishDate 2020
dc.date.none.fl_str_mv 2020-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662020000800567
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662020000800567
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1807-1929/agriambi.v24n8p567-572
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Departamento de Engenharia Agrícola - UFCG
publisher.none.fl_str_mv Departamento de Engenharia Agrícola - UFCG
dc.source.none.fl_str_mv Revista Brasileira de Engenharia Agrícola e Ambiental v.24 n.8 2020
reponame:Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
instname:Universidade Federal de Campina Grande (UFCG)
instacron:UFCG
instname_str Universidade Federal de Campina Grande (UFCG)
instacron_str UFCG
institution UFCG
reponame_str Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
collection Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
repository.name.fl_str_mv Revista Brasileira de Engenharia Agrícola e Ambiental (Online) - Universidade Federal de Campina Grande (UFCG)
repository.mail.fl_str_mv ||agriambi@agriambi.com.br
_version_ 1750297687436034048