Tomato quality based on colorimetric characteristics of digital images
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Brasileira de Engenharia Agrícola e Ambiental (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662020000800567 |
Resumo: | ABSTRACT Results of evaluations using optical evaluation methods may be correlated with tomato quality and maturation. In this context, the objective of this study was to evaluated the correlation between tomato colorimetric and physico-chemical variables, clustering them as a function of maturation stages, using multivariate analysis. The experiment was conducted using 150 fruits and three maturation stages (immature, light red and mature). The physico-chemical variables were evaluated through traditional methods. The colorimetric variables were assessed on images in RGB color model taken with a digital camera. The correlation between colorimetric and physico-chemical variables was analyzed using the Pearson’s coefficient. Principal components analysis and k-means clustering method was applied to three data set: RGB isolated variables; colorimetric variables calculated by relation between the RGB bands (colorimetric indexes); and physico-chemical variables. The colorimetric variables present higher explanatory capacity of the maturation variation than physico-chemical variables. The colorimetric indexes presented higher performance in clustering (accuracy of 0.98) tomatoes as a function of maturation. |
id |
UFCG-1_0abb53332da4f6de44428ca4c1241ffb |
---|---|
oai_identifier_str |
oai:scielo:S1415-43662020000800567 |
network_acronym_str |
UFCG-1 |
network_name_str |
Revista Brasileira de Engenharia Agrícola e Ambiental (Online) |
repository_id_str |
|
spelling |
Tomato quality based on colorimetric characteristics of digital imagesLicopersicum esculentumartificial vision systemsRGB modelABSTRACT Results of evaluations using optical evaluation methods may be correlated with tomato quality and maturation. In this context, the objective of this study was to evaluated the correlation between tomato colorimetric and physico-chemical variables, clustering them as a function of maturation stages, using multivariate analysis. The experiment was conducted using 150 fruits and three maturation stages (immature, light red and mature). The physico-chemical variables were evaluated through traditional methods. The colorimetric variables were assessed on images in RGB color model taken with a digital camera. The correlation between colorimetric and physico-chemical variables was analyzed using the Pearson’s coefficient. Principal components analysis and k-means clustering method was applied to three data set: RGB isolated variables; colorimetric variables calculated by relation between the RGB bands (colorimetric indexes); and physico-chemical variables. The colorimetric variables present higher explanatory capacity of the maturation variation than physico-chemical variables. The colorimetric indexes presented higher performance in clustering (accuracy of 0.98) tomatoes as a function of maturation.Departamento de Engenharia Agrícola - UFCG2020-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662020000800567Revista Brasileira de Engenharia Agrícola e Ambiental v.24 n.8 2020reponame:Revista Brasileira de Engenharia Agrícola e Ambiental (Online)instname:Universidade Federal de Campina Grande (UFCG)instacron:UFCG10.1590/1807-1929/agriambi.v24n8p567-572info:eu-repo/semantics/openAccessBello,Thaísa B.Costa,Anderson G.Silva,Thainara R. daPaes,Juliana L.Oliveira,Marcus V. M. deeng2020-07-28T00:00:00Zoai:scielo:S1415-43662020000800567Revistahttp://www.scielo.br/rbeaaPUBhttps://old.scielo.br/oai/scielo-oai.php||agriambi@agriambi.com.br1807-19291415-4366opendoar:2020-07-28T00:00Revista Brasileira de Engenharia Agrícola e Ambiental (Online) - Universidade Federal de Campina Grande (UFCG)false |
dc.title.none.fl_str_mv |
Tomato quality based on colorimetric characteristics of digital images |
title |
Tomato quality based on colorimetric characteristics of digital images |
spellingShingle |
Tomato quality based on colorimetric characteristics of digital images Bello,Thaísa B. Licopersicum esculentum artificial vision systems RGB model |
title_short |
Tomato quality based on colorimetric characteristics of digital images |
title_full |
Tomato quality based on colorimetric characteristics of digital images |
title_fullStr |
Tomato quality based on colorimetric characteristics of digital images |
title_full_unstemmed |
Tomato quality based on colorimetric characteristics of digital images |
title_sort |
Tomato quality based on colorimetric characteristics of digital images |
author |
Bello,Thaísa B. |
author_facet |
Bello,Thaísa B. Costa,Anderson G. Silva,Thainara R. da Paes,Juliana L. Oliveira,Marcus V. M. de |
author_role |
author |
author2 |
Costa,Anderson G. Silva,Thainara R. da Paes,Juliana L. Oliveira,Marcus V. M. de |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Bello,Thaísa B. Costa,Anderson G. Silva,Thainara R. da Paes,Juliana L. Oliveira,Marcus V. M. de |
dc.subject.por.fl_str_mv |
Licopersicum esculentum artificial vision systems RGB model |
topic |
Licopersicum esculentum artificial vision systems RGB model |
description |
ABSTRACT Results of evaluations using optical evaluation methods may be correlated with tomato quality and maturation. In this context, the objective of this study was to evaluated the correlation between tomato colorimetric and physico-chemical variables, clustering them as a function of maturation stages, using multivariate analysis. The experiment was conducted using 150 fruits and three maturation stages (immature, light red and mature). The physico-chemical variables were evaluated through traditional methods. The colorimetric variables were assessed on images in RGB color model taken with a digital camera. The correlation between colorimetric and physico-chemical variables was analyzed using the Pearson’s coefficient. Principal components analysis and k-means clustering method was applied to three data set: RGB isolated variables; colorimetric variables calculated by relation between the RGB bands (colorimetric indexes); and physico-chemical variables. The colorimetric variables present higher explanatory capacity of the maturation variation than physico-chemical variables. The colorimetric indexes presented higher performance in clustering (accuracy of 0.98) tomatoes as a function of maturation. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662020000800567 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662020000800567 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1807-1929/agriambi.v24n8p567-572 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Departamento de Engenharia Agrícola - UFCG |
publisher.none.fl_str_mv |
Departamento de Engenharia Agrícola - UFCG |
dc.source.none.fl_str_mv |
Revista Brasileira de Engenharia Agrícola e Ambiental v.24 n.8 2020 reponame:Revista Brasileira de Engenharia Agrícola e Ambiental (Online) instname:Universidade Federal de Campina Grande (UFCG) instacron:UFCG |
instname_str |
Universidade Federal de Campina Grande (UFCG) |
instacron_str |
UFCG |
institution |
UFCG |
reponame_str |
Revista Brasileira de Engenharia Agrícola e Ambiental (Online) |
collection |
Revista Brasileira de Engenharia Agrícola e Ambiental (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Engenharia Agrícola e Ambiental (Online) - Universidade Federal de Campina Grande (UFCG) |
repository.mail.fl_str_mv |
||agriambi@agriambi.com.br |
_version_ |
1750297687436034048 |