Pedotransfer functions for estimating the van Genuchten model parameters in the Cerrado biome
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Brasileira de Engenharia Agrícola e Ambiental (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662023000300202 |
Resumo: | ABSTRACT The Cerrado biome has presented challenges in reconciling its agricultural expansion with water availability. In this sense, water resources planning and management are fundamental for the economic, social, and environmental development of the Cerrado biome, which has been hampered by the lack of data, especially those referring to irrigation strategies, such as, for example, the water retention curve. The water retention curve is essential to understand water dynamics in the soil; however, obtaining it can be laborious, opening an opportunity for Pedotransfer Functions (PTFs). The current study aimed to develop and evaluate PTFs to estimate the fit parameters of the van Genuchten model for the Cerrado biome. Multiple Linear Regression (MLR) and four machine learning (ML) algorithms were used to develop the PTFs. The ML algorithms were the Multivariate Adaptive Regression Splines (MARS), Random Forest (RF), Support Vector Regression (SVR), and K Nearest Neighbors (KNN). Two combinations of soil data were evaluated, and the predictor variables used in each set were different. Using the RF and SVR models, the best estimates were obtained concerning the parameter θs (saturated water content). As for θr (residual water content), the models showed a moderate predictive capacity. For the other parameters, the models did not perform satisfactorily for α and n (fit parameters). |
id |
UFCG-1_0b03c028fd83f8c404a642caa9ec104e |
---|---|
oai_identifier_str |
oai:scielo:S1415-43662023000300202 |
network_acronym_str |
UFCG-1 |
network_name_str |
Revista Brasileira de Engenharia Agrícola e Ambiental (Online) |
repository_id_str |
|
spelling |
Pedotransfer functions for estimating the van Genuchten model parameters in the Cerrado biomemachine learningmultiple linear regressionirrigationABSTRACT The Cerrado biome has presented challenges in reconciling its agricultural expansion with water availability. In this sense, water resources planning and management are fundamental for the economic, social, and environmental development of the Cerrado biome, which has been hampered by the lack of data, especially those referring to irrigation strategies, such as, for example, the water retention curve. The water retention curve is essential to understand water dynamics in the soil; however, obtaining it can be laborious, opening an opportunity for Pedotransfer Functions (PTFs). The current study aimed to develop and evaluate PTFs to estimate the fit parameters of the van Genuchten model for the Cerrado biome. Multiple Linear Regression (MLR) and four machine learning (ML) algorithms were used to develop the PTFs. The ML algorithms were the Multivariate Adaptive Regression Splines (MARS), Random Forest (RF), Support Vector Regression (SVR), and K Nearest Neighbors (KNN). Two combinations of soil data were evaluated, and the predictor variables used in each set were different. Using the RF and SVR models, the best estimates were obtained concerning the parameter θs (saturated water content). As for θr (residual water content), the models showed a moderate predictive capacity. For the other parameters, the models did not perform satisfactorily for α and n (fit parameters).Departamento de Engenharia Agrícola - UFCG2023-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662023000300202Revista Brasileira de Engenharia Agrícola e Ambiental v.27 n.3 2023reponame:Revista Brasileira de Engenharia Agrícola e Ambiental (Online)instname:Universidade Federal de Campina Grande (UFCG)instacron:UFCG10.1590/1807-1929/agriambi.v27n3p202-208info:eu-repo/semantics/openAccessVeloso,Mariana F.Rodrigues,Lineu N.Fernandes Filho,Elpídio I.Veloso,Carolina F.Rezende,Bruna N.eng2022-11-17T00:00:00Zoai:scielo:S1415-43662023000300202Revistahttp://www.scielo.br/rbeaaPUBhttps://old.scielo.br/oai/scielo-oai.php||agriambi@agriambi.com.br1807-19291415-4366opendoar:2022-11-17T00:00Revista Brasileira de Engenharia Agrícola e Ambiental (Online) - Universidade Federal de Campina Grande (UFCG)false |
dc.title.none.fl_str_mv |
Pedotransfer functions for estimating the van Genuchten model parameters in the Cerrado biome |
title |
Pedotransfer functions for estimating the van Genuchten model parameters in the Cerrado biome |
spellingShingle |
Pedotransfer functions for estimating the van Genuchten model parameters in the Cerrado biome Veloso,Mariana F. machine learning multiple linear regression irrigation |
title_short |
Pedotransfer functions for estimating the van Genuchten model parameters in the Cerrado biome |
title_full |
Pedotransfer functions for estimating the van Genuchten model parameters in the Cerrado biome |
title_fullStr |
Pedotransfer functions for estimating the van Genuchten model parameters in the Cerrado biome |
title_full_unstemmed |
Pedotransfer functions for estimating the van Genuchten model parameters in the Cerrado biome |
title_sort |
Pedotransfer functions for estimating the van Genuchten model parameters in the Cerrado biome |
author |
Veloso,Mariana F. |
author_facet |
Veloso,Mariana F. Rodrigues,Lineu N. Fernandes Filho,Elpídio I. Veloso,Carolina F. Rezende,Bruna N. |
author_role |
author |
author2 |
Rodrigues,Lineu N. Fernandes Filho,Elpídio I. Veloso,Carolina F. Rezende,Bruna N. |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Veloso,Mariana F. Rodrigues,Lineu N. Fernandes Filho,Elpídio I. Veloso,Carolina F. Rezende,Bruna N. |
dc.subject.por.fl_str_mv |
machine learning multiple linear regression irrigation |
topic |
machine learning multiple linear regression irrigation |
description |
ABSTRACT The Cerrado biome has presented challenges in reconciling its agricultural expansion with water availability. In this sense, water resources planning and management are fundamental for the economic, social, and environmental development of the Cerrado biome, which has been hampered by the lack of data, especially those referring to irrigation strategies, such as, for example, the water retention curve. The water retention curve is essential to understand water dynamics in the soil; however, obtaining it can be laborious, opening an opportunity for Pedotransfer Functions (PTFs). The current study aimed to develop and evaluate PTFs to estimate the fit parameters of the van Genuchten model for the Cerrado biome. Multiple Linear Regression (MLR) and four machine learning (ML) algorithms were used to develop the PTFs. The ML algorithms were the Multivariate Adaptive Regression Splines (MARS), Random Forest (RF), Support Vector Regression (SVR), and K Nearest Neighbors (KNN). Two combinations of soil data were evaluated, and the predictor variables used in each set were different. Using the RF and SVR models, the best estimates were obtained concerning the parameter θs (saturated water content). As for θr (residual water content), the models showed a moderate predictive capacity. For the other parameters, the models did not perform satisfactorily for α and n (fit parameters). |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-03-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662023000300202 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662023000300202 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1807-1929/agriambi.v27n3p202-208 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Departamento de Engenharia Agrícola - UFCG |
publisher.none.fl_str_mv |
Departamento de Engenharia Agrícola - UFCG |
dc.source.none.fl_str_mv |
Revista Brasileira de Engenharia Agrícola e Ambiental v.27 n.3 2023 reponame:Revista Brasileira de Engenharia Agrícola e Ambiental (Online) instname:Universidade Federal de Campina Grande (UFCG) instacron:UFCG |
instname_str |
Universidade Federal de Campina Grande (UFCG) |
instacron_str |
UFCG |
institution |
UFCG |
reponame_str |
Revista Brasileira de Engenharia Agrícola e Ambiental (Online) |
collection |
Revista Brasileira de Engenharia Agrícola e Ambiental (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Engenharia Agrícola e Ambiental (Online) - Universidade Federal de Campina Grande (UFCG) |
repository.mail.fl_str_mv |
||agriambi@agriambi.com.br |
_version_ |
1750297688747802624 |