Estimating soil loss by laminar erosion using precision agriculture computational tools

Detalhes bibliográficos
Autor(a) principal: Krug,Evelin T. S.
Data de Publicação: 2022
Outros Autores: Gomes,Glaucio J., Souza,Eduardo G. de, Gebler,Luciano, Sobjak,Ricardo, Bazzi,Claudio L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662022001200907
Resumo: ABSTRACT The study aimed to identify and evaluate the spatial variability in laminar erosion in areas using precision agriculture tools. Soil data from three properties in the western region of Paraná state, Brazil, were used: one in the municipality of Céu Azul (area A) and two in Serranópolis do Iguaçu (areas B and C). To identify discrepant data (outliers), analysis of the dispersion of quartiles was performed using a box-plot graph. Data normality was verified using the Kolmogorov-Smirnov test. A spatial analysis was performed using AgDataBox-Map software. The parameters of the universal soil loss equation were estimated and used with map algebra to produce a model to identify areas susceptible to erosion. Area A (soil loss estimate = 0-200 t ha-1 per year) presented greater susceptibility to erosion than areas B and C (soil loss estimate = 0-150 t ha-1 per year); however, all areas had a low susceptibility to erosion.
id UFCG-1_0cb5cfc4c98172af48e7c1c0e60941d5
oai_identifier_str oai:scielo:S1415-43662022001200907
network_acronym_str UFCG-1
network_name_str Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
repository_id_str
spelling Estimating soil loss by laminar erosion using precision agriculture computational toolsprecision agriculturethematic mapsgeostatisticsuniversal soil loss equationkrigingABSTRACT The study aimed to identify and evaluate the spatial variability in laminar erosion in areas using precision agriculture tools. Soil data from three properties in the western region of Paraná state, Brazil, were used: one in the municipality of Céu Azul (area A) and two in Serranópolis do Iguaçu (areas B and C). To identify discrepant data (outliers), analysis of the dispersion of quartiles was performed using a box-plot graph. Data normality was verified using the Kolmogorov-Smirnov test. A spatial analysis was performed using AgDataBox-Map software. The parameters of the universal soil loss equation were estimated and used with map algebra to produce a model to identify areas susceptible to erosion. Area A (soil loss estimate = 0-200 t ha-1 per year) presented greater susceptibility to erosion than areas B and C (soil loss estimate = 0-150 t ha-1 per year); however, all areas had a low susceptibility to erosion.Departamento de Engenharia Agrícola - UFCG2022-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662022001200907Revista Brasileira de Engenharia Agrícola e Ambiental v.26 n.12 2022reponame:Revista Brasileira de Engenharia Agrícola e Ambiental (Online)instname:Universidade Federal de Campina Grande (UFCG)instacron:UFCG10.1590/1807-1929/agriambi.v26n12p907-914info:eu-repo/semantics/openAccessKrug,Evelin T. S.Gomes,Glaucio J.Souza,Eduardo G. deGebler,LucianoSobjak,RicardoBazzi,Claudio L.eng2022-08-03T00:00:00Zoai:scielo:S1415-43662022001200907Revistahttp://www.scielo.br/rbeaaPUBhttps://old.scielo.br/oai/scielo-oai.php||agriambi@agriambi.com.br1807-19291415-4366opendoar:2022-08-03T00:00Revista Brasileira de Engenharia Agrícola e Ambiental (Online) - Universidade Federal de Campina Grande (UFCG)false
dc.title.none.fl_str_mv Estimating soil loss by laminar erosion using precision agriculture computational tools
title Estimating soil loss by laminar erosion using precision agriculture computational tools
spellingShingle Estimating soil loss by laminar erosion using precision agriculture computational tools
Krug,Evelin T. S.
precision agriculture
thematic maps
geostatistics
universal soil loss equation
kriging
title_short Estimating soil loss by laminar erosion using precision agriculture computational tools
title_full Estimating soil loss by laminar erosion using precision agriculture computational tools
title_fullStr Estimating soil loss by laminar erosion using precision agriculture computational tools
title_full_unstemmed Estimating soil loss by laminar erosion using precision agriculture computational tools
title_sort Estimating soil loss by laminar erosion using precision agriculture computational tools
author Krug,Evelin T. S.
author_facet Krug,Evelin T. S.
Gomes,Glaucio J.
Souza,Eduardo G. de
Gebler,Luciano
Sobjak,Ricardo
Bazzi,Claudio L.
author_role author
author2 Gomes,Glaucio J.
Souza,Eduardo G. de
Gebler,Luciano
Sobjak,Ricardo
Bazzi,Claudio L.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Krug,Evelin T. S.
Gomes,Glaucio J.
Souza,Eduardo G. de
Gebler,Luciano
Sobjak,Ricardo
Bazzi,Claudio L.
dc.subject.por.fl_str_mv precision agriculture
thematic maps
geostatistics
universal soil loss equation
kriging
topic precision agriculture
thematic maps
geostatistics
universal soil loss equation
kriging
description ABSTRACT The study aimed to identify and evaluate the spatial variability in laminar erosion in areas using precision agriculture tools. Soil data from three properties in the western region of Paraná state, Brazil, were used: one in the municipality of Céu Azul (area A) and two in Serranópolis do Iguaçu (areas B and C). To identify discrepant data (outliers), analysis of the dispersion of quartiles was performed using a box-plot graph. Data normality was verified using the Kolmogorov-Smirnov test. A spatial analysis was performed using AgDataBox-Map software. The parameters of the universal soil loss equation were estimated and used with map algebra to produce a model to identify areas susceptible to erosion. Area A (soil loss estimate = 0-200 t ha-1 per year) presented greater susceptibility to erosion than areas B and C (soil loss estimate = 0-150 t ha-1 per year); however, all areas had a low susceptibility to erosion.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662022001200907
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662022001200907
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1807-1929/agriambi.v26n12p907-914
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Departamento de Engenharia Agrícola - UFCG
publisher.none.fl_str_mv Departamento de Engenharia Agrícola - UFCG
dc.source.none.fl_str_mv Revista Brasileira de Engenharia Agrícola e Ambiental v.26 n.12 2022
reponame:Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
instname:Universidade Federal de Campina Grande (UFCG)
instacron:UFCG
instname_str Universidade Federal de Campina Grande (UFCG)
instacron_str UFCG
institution UFCG
reponame_str Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
collection Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
repository.name.fl_str_mv Revista Brasileira de Engenharia Agrícola e Ambiental (Online) - Universidade Federal de Campina Grande (UFCG)
repository.mail.fl_str_mv ||agriambi@agriambi.com.br
_version_ 1750297688686985216