Potential risk of drift from inclined fan nozzles

Detalhes bibliográficos
Autor(a) principal: Moraes,Eder D. de
Data de Publicação: 2019
Outros Autores: Saab,Otávio J. G. A., Gandolfo,Marco A., Marubayashi,Rodrigo Y. P., Gandolfo,Ulisses D.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662019000300229
Resumo: ABSTRACT Pest, disease and weed control in large-scale crops depend on the application of agrochemicals. These applications are subject to several factors that can lead to drift. The objective of this study was to evaluate the effect of spray nozzles with inclined flat jet, on the drift. The drift was collected in a 10 m wind tunnel, with a spray system inside. The samples were collected in 5 horizontal points, from 2.0 to 6.0 m away from the spray nozzle and 5 points in the vertical, from 0.1 to 0.5 m away from the lower base of the wind tunnel, totaling 25 sample points. The mixture applied was glyphosate (isopropylamine salt, 1080 g a.e. ha-1) with 2,4-D (dimethylamine salt, 1.005 g a.e. ha-1). The nozzles J3D 100 025, JGC 120 02, JAP 110 015 and ADI 110 015 (control), inclined by 37.5º, 20º, 15º and 0º, respectively, were used in two directions of spray: upwind and downwind of the air flow direction. The nozzles J3D, JGC and JAP, when inclined downwind reduced the drift by 16.1, 2.6 and 39.0%, respectively, relative to the control, and when inclined upwind, reduced drift by 53.4, 3.9 and 18.6%, respectively, relative to the control. Spray nozzles with second-generation air-induction inclined flat jet (JAP) and standard inclined flat jet (J3D) reduce the collected drift compared to the nozzle without inclination, regardless of wind flow direction.
id UFCG-1_305537b8259f8fe8e85a1f2061e8d63d
oai_identifier_str oai:scielo:S1415-43662019000300229
network_acronym_str UFCG-1
network_name_str Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
repository_id_str
spelling Potential risk of drift from inclined fan nozzleswind tunnelenvironmental contaminationphytosanitary controlJ3DABSTRACT Pest, disease and weed control in large-scale crops depend on the application of agrochemicals. These applications are subject to several factors that can lead to drift. The objective of this study was to evaluate the effect of spray nozzles with inclined flat jet, on the drift. The drift was collected in a 10 m wind tunnel, with a spray system inside. The samples were collected in 5 horizontal points, from 2.0 to 6.0 m away from the spray nozzle and 5 points in the vertical, from 0.1 to 0.5 m away from the lower base of the wind tunnel, totaling 25 sample points. The mixture applied was glyphosate (isopropylamine salt, 1080 g a.e. ha-1) with 2,4-D (dimethylamine salt, 1.005 g a.e. ha-1). The nozzles J3D 100 025, JGC 120 02, JAP 110 015 and ADI 110 015 (control), inclined by 37.5º, 20º, 15º and 0º, respectively, were used in two directions of spray: upwind and downwind of the air flow direction. The nozzles J3D, JGC and JAP, when inclined downwind reduced the drift by 16.1, 2.6 and 39.0%, respectively, relative to the control, and when inclined upwind, reduced drift by 53.4, 3.9 and 18.6%, respectively, relative to the control. Spray nozzles with second-generation air-induction inclined flat jet (JAP) and standard inclined flat jet (J3D) reduce the collected drift compared to the nozzle without inclination, regardless of wind flow direction.Departamento de Engenharia Agrícola - UFCG2019-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662019000300229Revista Brasileira de Engenharia Agrícola e Ambiental v.23 n.3 2019reponame:Revista Brasileira de Engenharia Agrícola e Ambiental (Online)instname:Universidade Federal de Campina Grande (UFCG)instacron:UFCG10.1590/1807-1929/agriambi.v23n3p229-233info:eu-repo/semantics/openAccessMoraes,Eder D. deSaab,Otávio J. G. A.Gandolfo,Marco A.Marubayashi,Rodrigo Y. P.Gandolfo,Ulisses D.eng2019-03-07T00:00:00Zoai:scielo:S1415-43662019000300229Revistahttp://www.scielo.br/rbeaaPUBhttps://old.scielo.br/oai/scielo-oai.php||agriambi@agriambi.com.br1807-19291415-4366opendoar:2019-03-07T00:00Revista Brasileira de Engenharia Agrícola e Ambiental (Online) - Universidade Federal de Campina Grande (UFCG)false
dc.title.none.fl_str_mv Potential risk of drift from inclined fan nozzles
title Potential risk of drift from inclined fan nozzles
spellingShingle Potential risk of drift from inclined fan nozzles
Moraes,Eder D. de
wind tunnel
environmental contamination
phytosanitary control
J3D
title_short Potential risk of drift from inclined fan nozzles
title_full Potential risk of drift from inclined fan nozzles
title_fullStr Potential risk of drift from inclined fan nozzles
title_full_unstemmed Potential risk of drift from inclined fan nozzles
title_sort Potential risk of drift from inclined fan nozzles
author Moraes,Eder D. de
author_facet Moraes,Eder D. de
Saab,Otávio J. G. A.
Gandolfo,Marco A.
Marubayashi,Rodrigo Y. P.
Gandolfo,Ulisses D.
author_role author
author2 Saab,Otávio J. G. A.
Gandolfo,Marco A.
Marubayashi,Rodrigo Y. P.
Gandolfo,Ulisses D.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Moraes,Eder D. de
Saab,Otávio J. G. A.
Gandolfo,Marco A.
Marubayashi,Rodrigo Y. P.
Gandolfo,Ulisses D.
dc.subject.por.fl_str_mv wind tunnel
environmental contamination
phytosanitary control
J3D
topic wind tunnel
environmental contamination
phytosanitary control
J3D
description ABSTRACT Pest, disease and weed control in large-scale crops depend on the application of agrochemicals. These applications are subject to several factors that can lead to drift. The objective of this study was to evaluate the effect of spray nozzles with inclined flat jet, on the drift. The drift was collected in a 10 m wind tunnel, with a spray system inside. The samples were collected in 5 horizontal points, from 2.0 to 6.0 m away from the spray nozzle and 5 points in the vertical, from 0.1 to 0.5 m away from the lower base of the wind tunnel, totaling 25 sample points. The mixture applied was glyphosate (isopropylamine salt, 1080 g a.e. ha-1) with 2,4-D (dimethylamine salt, 1.005 g a.e. ha-1). The nozzles J3D 100 025, JGC 120 02, JAP 110 015 and ADI 110 015 (control), inclined by 37.5º, 20º, 15º and 0º, respectively, were used in two directions of spray: upwind and downwind of the air flow direction. The nozzles J3D, JGC and JAP, when inclined downwind reduced the drift by 16.1, 2.6 and 39.0%, respectively, relative to the control, and when inclined upwind, reduced drift by 53.4, 3.9 and 18.6%, respectively, relative to the control. Spray nozzles with second-generation air-induction inclined flat jet (JAP) and standard inclined flat jet (J3D) reduce the collected drift compared to the nozzle without inclination, regardless of wind flow direction.
publishDate 2019
dc.date.none.fl_str_mv 2019-03-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662019000300229
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662019000300229
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1807-1929/agriambi.v23n3p229-233
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Departamento de Engenharia Agrícola - UFCG
publisher.none.fl_str_mv Departamento de Engenharia Agrícola - UFCG
dc.source.none.fl_str_mv Revista Brasileira de Engenharia Agrícola e Ambiental v.23 n.3 2019
reponame:Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
instname:Universidade Federal de Campina Grande (UFCG)
instacron:UFCG
instname_str Universidade Federal de Campina Grande (UFCG)
instacron_str UFCG
institution UFCG
reponame_str Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
collection Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
repository.name.fl_str_mv Revista Brasileira de Engenharia Agrícola e Ambiental (Online) - Universidade Federal de Campina Grande (UFCG)
repository.mail.fl_str_mv ||agriambi@agriambi.com.br
_version_ 1750297686537404416