Spatial and multivariate analysis of soybean productivity and soil physical-chemical attributes

Detalhes bibliográficos
Autor(a) principal: Buss,Ricardo N.
Data de Publicação: 2019
Outros Autores: Silva,Raimunda A., Siqueira,Glécio M., Leiva,Jairo O. R., Oliveira,Osmann C. C., França,Victor L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662019000600446
Resumo: ABSTRACT The objective of this study was to evaluate the spatial variability of soybean yield, carbon stock, and soil physical attributes using multivariate and geostatistical techniques. The attributes were determined in Oxisols samples with clayey and cohesive textures collected from the municipality of Mata Roma, Maranhão state, Brazil. In the study area, 70 sampling points were demarcated, and soybean yield and soil attributes were evaluated at soil depths of 0-0.20 and 0.20-0.40 m. Data were analysed using multivariate analyses (principal component analysis, PCA) and geostatistical tools. The mean soybean yield was 3,370 kg ha-1. The semivariogram of productivity, organic carbon (OC), and carbon stock (Cst) at the 0-0.20 m layer were adjusted to the spherical model. The PCA explained 73.21% of the variance and covariance structure between productivity and soil attributes at the 0-0.20 m layer [(PCA 1 (26.89%), PCA 2 (24.10%), and PCA 3 (22.22%)] and 68.64% at the 0.20-0.40 m layer [PCA 1 (31.95%), PCA 2 (22.83%), and PCA 3 (13.85%)]. The spatial variability maps of the PCA eigenvalue scores showed that it is possible to determine management zones using PCA 1 in the two studied depths; however, with different management strategies for each of the layers in this study.
id UFCG-1_7429082fffd10c34c9849820a5a0c106
oai_identifier_str oai:scielo:S1415-43662019000600446
network_acronym_str UFCG-1
network_name_str Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
repository_id_str
spelling Spatial and multivariate analysis of soybean productivity and soil physical-chemical attributesmanagement zonesgeostatisticsprincipal componentsABSTRACT The objective of this study was to evaluate the spatial variability of soybean yield, carbon stock, and soil physical attributes using multivariate and geostatistical techniques. The attributes were determined in Oxisols samples with clayey and cohesive textures collected from the municipality of Mata Roma, Maranhão state, Brazil. In the study area, 70 sampling points were demarcated, and soybean yield and soil attributes were evaluated at soil depths of 0-0.20 and 0.20-0.40 m. Data were analysed using multivariate analyses (principal component analysis, PCA) and geostatistical tools. The mean soybean yield was 3,370 kg ha-1. The semivariogram of productivity, organic carbon (OC), and carbon stock (Cst) at the 0-0.20 m layer were adjusted to the spherical model. The PCA explained 73.21% of the variance and covariance structure between productivity and soil attributes at the 0-0.20 m layer [(PCA 1 (26.89%), PCA 2 (24.10%), and PCA 3 (22.22%)] and 68.64% at the 0.20-0.40 m layer [PCA 1 (31.95%), PCA 2 (22.83%), and PCA 3 (13.85%)]. The spatial variability maps of the PCA eigenvalue scores showed that it is possible to determine management zones using PCA 1 in the two studied depths; however, with different management strategies for each of the layers in this study.Departamento de Engenharia Agrícola - UFCG2019-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662019000600446Revista Brasileira de Engenharia Agrícola e Ambiental v.23 n.6 2019reponame:Revista Brasileira de Engenharia Agrícola e Ambiental (Online)instname:Universidade Federal de Campina Grande (UFCG)instacron:UFCG10.1590/1807-1929/agriambi.v23n6p446-453info:eu-repo/semantics/openAccessBuss,Ricardo N.Silva,Raimunda A.Siqueira,Glécio M.Leiva,Jairo O. R.Oliveira,Osmann C. C.França,Victor L.eng2019-06-27T00:00:00Zoai:scielo:S1415-43662019000600446Revistahttp://www.scielo.br/rbeaaPUBhttps://old.scielo.br/oai/scielo-oai.php||agriambi@agriambi.com.br1807-19291415-4366opendoar:2019-06-27T00:00Revista Brasileira de Engenharia Agrícola e Ambiental (Online) - Universidade Federal de Campina Grande (UFCG)false
dc.title.none.fl_str_mv Spatial and multivariate analysis of soybean productivity and soil physical-chemical attributes
title Spatial and multivariate analysis of soybean productivity and soil physical-chemical attributes
spellingShingle Spatial and multivariate analysis of soybean productivity and soil physical-chemical attributes
Buss,Ricardo N.
management zones
geostatistics
principal components
title_short Spatial and multivariate analysis of soybean productivity and soil physical-chemical attributes
title_full Spatial and multivariate analysis of soybean productivity and soil physical-chemical attributes
title_fullStr Spatial and multivariate analysis of soybean productivity and soil physical-chemical attributes
title_full_unstemmed Spatial and multivariate analysis of soybean productivity and soil physical-chemical attributes
title_sort Spatial and multivariate analysis of soybean productivity and soil physical-chemical attributes
author Buss,Ricardo N.
author_facet Buss,Ricardo N.
Silva,Raimunda A.
Siqueira,Glécio M.
Leiva,Jairo O. R.
Oliveira,Osmann C. C.
França,Victor L.
author_role author
author2 Silva,Raimunda A.
Siqueira,Glécio M.
Leiva,Jairo O. R.
Oliveira,Osmann C. C.
França,Victor L.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Buss,Ricardo N.
Silva,Raimunda A.
Siqueira,Glécio M.
Leiva,Jairo O. R.
Oliveira,Osmann C. C.
França,Victor L.
dc.subject.por.fl_str_mv management zones
geostatistics
principal components
topic management zones
geostatistics
principal components
description ABSTRACT The objective of this study was to evaluate the spatial variability of soybean yield, carbon stock, and soil physical attributes using multivariate and geostatistical techniques. The attributes were determined in Oxisols samples with clayey and cohesive textures collected from the municipality of Mata Roma, Maranhão state, Brazil. In the study area, 70 sampling points were demarcated, and soybean yield and soil attributes were evaluated at soil depths of 0-0.20 and 0.20-0.40 m. Data were analysed using multivariate analyses (principal component analysis, PCA) and geostatistical tools. The mean soybean yield was 3,370 kg ha-1. The semivariogram of productivity, organic carbon (OC), and carbon stock (Cst) at the 0-0.20 m layer were adjusted to the spherical model. The PCA explained 73.21% of the variance and covariance structure between productivity and soil attributes at the 0-0.20 m layer [(PCA 1 (26.89%), PCA 2 (24.10%), and PCA 3 (22.22%)] and 68.64% at the 0.20-0.40 m layer [PCA 1 (31.95%), PCA 2 (22.83%), and PCA 3 (13.85%)]. The spatial variability maps of the PCA eigenvalue scores showed that it is possible to determine management zones using PCA 1 in the two studied depths; however, with different management strategies for each of the layers in this study.
publishDate 2019
dc.date.none.fl_str_mv 2019-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662019000600446
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662019000600446
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1807-1929/agriambi.v23n6p446-453
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Departamento de Engenharia Agrícola - UFCG
publisher.none.fl_str_mv Departamento de Engenharia Agrícola - UFCG
dc.source.none.fl_str_mv Revista Brasileira de Engenharia Agrícola e Ambiental v.23 n.6 2019
reponame:Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
instname:Universidade Federal de Campina Grande (UFCG)
instacron:UFCG
instname_str Universidade Federal de Campina Grande (UFCG)
instacron_str UFCG
institution UFCG
reponame_str Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
collection Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
repository.name.fl_str_mv Revista Brasileira de Engenharia Agrícola e Ambiental (Online) - Universidade Federal de Campina Grande (UFCG)
repository.mail.fl_str_mv ||agriambi@agriambi.com.br
_version_ 1750297686867705856