Regression models for productivity prediction in cactus pear cv. Gigante

Detalhes bibliográficos
Autor(a) principal: Guimarães,Bruno V. C.
Data de Publicação: 2020
Outros Autores: Donato,Sérgio L. R., Aspiazú,Ignacio, Azevedo,Alcinei M., Carvalho,Abner J. de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662020001100721
Resumo: ABSTRACT The understanding of plant behavior and its reflexes on yield is essential for rural planning; thus, the biomathematical models are promising in the yield prediction of cactus pear cv. Gigante. This study aimed to adjust, through simple and multiple regression analysis, models for predicting the yield of cactus pear cv. Gigante. The study, using homogeneous treatments, was developed at the Instituto Federal Baiano, Campus of Guanambi, Bahia, Brazil. Data were collected in an area consisting of 384 basic units (plants), in which the yield, defined as a dependent variable, and the predictor variables: plant height (PH), cladode length (CL), cladode width (CW), and cladode thickness (CT), number of cladodes (NC), cladode area (CA), and total cladode area (TCA) were evaluated. Simple linear regression models, multiple regression models only with simple effects for the explanatory variables, and the multiple regression models considering the simple and quadratic effects, and all its possible interactions were adjusted. From this last model, a reduced model was obtained by discarding the less relevant effects, using the Stepwise methodology. The use of the vegetative traits, TCA, NC, CA, CL, CT, and CW, through the adoption of multiple linear regression, quadratic interaction or just the variable TCA by the use of simple linear regression, allows the yield prediction of cactus pear, with adjusted R² of 0.82, 0.76, and 0.74, respectively.
id UFCG-1_cfae8147b3424e03c49b23401649a2c7
oai_identifier_str oai:scielo:S1415-43662020001100721
network_acronym_str UFCG-1
network_name_str Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
repository_id_str
spelling Regression models for productivity prediction in cactus pear cv. GiganteOpuntia sp.modelingestimationyieldABSTRACT The understanding of plant behavior and its reflexes on yield is essential for rural planning; thus, the biomathematical models are promising in the yield prediction of cactus pear cv. Gigante. This study aimed to adjust, through simple and multiple regression analysis, models for predicting the yield of cactus pear cv. Gigante. The study, using homogeneous treatments, was developed at the Instituto Federal Baiano, Campus of Guanambi, Bahia, Brazil. Data were collected in an area consisting of 384 basic units (plants), in which the yield, defined as a dependent variable, and the predictor variables: plant height (PH), cladode length (CL), cladode width (CW), and cladode thickness (CT), number of cladodes (NC), cladode area (CA), and total cladode area (TCA) were evaluated. Simple linear regression models, multiple regression models only with simple effects for the explanatory variables, and the multiple regression models considering the simple and quadratic effects, and all its possible interactions were adjusted. From this last model, a reduced model was obtained by discarding the less relevant effects, using the Stepwise methodology. The use of the vegetative traits, TCA, NC, CA, CL, CT, and CW, through the adoption of multiple linear regression, quadratic interaction or just the variable TCA by the use of simple linear regression, allows the yield prediction of cactus pear, with adjusted R² of 0.82, 0.76, and 0.74, respectively.Departamento de Engenharia Agrícola - UFCG2020-11-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662020001100721Revista Brasileira de Engenharia Agrícola e Ambiental v.24 n.11 2020reponame:Revista Brasileira de Engenharia Agrícola e Ambiental (Online)instname:Universidade Federal de Campina Grande (UFCG)instacron:UFCG10.1590/1807-1929/agriambi.v24n11p721-727info:eu-repo/semantics/openAccessGuimarães,Bruno V. C.Donato,Sérgio L. R.Aspiazú,IgnacioAzevedo,Alcinei M.Carvalho,Abner J. deeng2020-10-28T00:00:00Zoai:scielo:S1415-43662020001100721Revistahttp://www.scielo.br/rbeaaPUBhttps://old.scielo.br/oai/scielo-oai.php||agriambi@agriambi.com.br1807-19291415-4366opendoar:2020-10-28T00:00Revista Brasileira de Engenharia Agrícola e Ambiental (Online) - Universidade Federal de Campina Grande (UFCG)false
dc.title.none.fl_str_mv Regression models for productivity prediction in cactus pear cv. Gigante
title Regression models for productivity prediction in cactus pear cv. Gigante
spellingShingle Regression models for productivity prediction in cactus pear cv. Gigante
Guimarães,Bruno V. C.
Opuntia sp.
modeling
estimation
yield
title_short Regression models for productivity prediction in cactus pear cv. Gigante
title_full Regression models for productivity prediction in cactus pear cv. Gigante
title_fullStr Regression models for productivity prediction in cactus pear cv. Gigante
title_full_unstemmed Regression models for productivity prediction in cactus pear cv. Gigante
title_sort Regression models for productivity prediction in cactus pear cv. Gigante
author Guimarães,Bruno V. C.
author_facet Guimarães,Bruno V. C.
Donato,Sérgio L. R.
Aspiazú,Ignacio
Azevedo,Alcinei M.
Carvalho,Abner J. de
author_role author
author2 Donato,Sérgio L. R.
Aspiazú,Ignacio
Azevedo,Alcinei M.
Carvalho,Abner J. de
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Guimarães,Bruno V. C.
Donato,Sérgio L. R.
Aspiazú,Ignacio
Azevedo,Alcinei M.
Carvalho,Abner J. de
dc.subject.por.fl_str_mv Opuntia sp.
modeling
estimation
yield
topic Opuntia sp.
modeling
estimation
yield
description ABSTRACT The understanding of plant behavior and its reflexes on yield is essential for rural planning; thus, the biomathematical models are promising in the yield prediction of cactus pear cv. Gigante. This study aimed to adjust, through simple and multiple regression analysis, models for predicting the yield of cactus pear cv. Gigante. The study, using homogeneous treatments, was developed at the Instituto Federal Baiano, Campus of Guanambi, Bahia, Brazil. Data were collected in an area consisting of 384 basic units (plants), in which the yield, defined as a dependent variable, and the predictor variables: plant height (PH), cladode length (CL), cladode width (CW), and cladode thickness (CT), number of cladodes (NC), cladode area (CA), and total cladode area (TCA) were evaluated. Simple linear regression models, multiple regression models only with simple effects for the explanatory variables, and the multiple regression models considering the simple and quadratic effects, and all its possible interactions were adjusted. From this last model, a reduced model was obtained by discarding the less relevant effects, using the Stepwise methodology. The use of the vegetative traits, TCA, NC, CA, CL, CT, and CW, through the adoption of multiple linear regression, quadratic interaction or just the variable TCA by the use of simple linear regression, allows the yield prediction of cactus pear, with adjusted R² of 0.82, 0.76, and 0.74, respectively.
publishDate 2020
dc.date.none.fl_str_mv 2020-11-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662020001100721
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662020001100721
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1807-1929/agriambi.v24n11p721-727
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Departamento de Engenharia Agrícola - UFCG
publisher.none.fl_str_mv Departamento de Engenharia Agrícola - UFCG
dc.source.none.fl_str_mv Revista Brasileira de Engenharia Agrícola e Ambiental v.24 n.11 2020
reponame:Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
instname:Universidade Federal de Campina Grande (UFCG)
instacron:UFCG
instname_str Universidade Federal de Campina Grande (UFCG)
instacron_str UFCG
institution UFCG
reponame_str Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
collection Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
repository.name.fl_str_mv Revista Brasileira de Engenharia Agrícola e Ambiental (Online) - Universidade Federal de Campina Grande (UFCG)
repository.mail.fl_str_mv ||agriambi@agriambi.com.br
_version_ 1750297687474831360