Simulation of wheat yield by nitrogen and nonlinearity of environmental conditions

Detalhes bibliográficos
Autor(a) principal: Trautmann,Ana P. B.
Data de Publicação: 2020
Outros Autores: Silva,José A. G. da, Binelo,Manuel O., Valdiero,Antonio C., Henrichsen,Luana, Basso,Natiane C. F.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662020000100044
Resumo: ABSTRACT Fuzzy logic can simulate wheat productivity by assisting crop predictability. The objective of the study is the use of fuzzy logic to simulate wheat yield in the conditions of nitrogen use, together with the effects of air temperature and rainfall, in the main cereal succession systems in Southern Brazil. The study was conducted in the years 2014, 2015 and 2016, in Augusto Pestana, RS, Brazil. The experimental design was a randomized block design with four repetitions in a 4 x 3 factorial scheme for N-fertilizer doses (0, 30, 60, 120 kg ha-1) and nutrient supply forms [100% in phenological stage V3 (third expanded leaf); (70%/30%) in the phenological stage V3/V6 (third and sixth expanded leaf) and; fractionated (70%/30%) at the phenological stage V3/E (third expanded leaf and beginning of grain filling)], respectively, in the soybean/wheat and corn/wheat systems. The pertinence functions and the linguistic values ​​established for the input and output variables are adequate for the use of fuzzy logic. Fuzzy logic simulates wheat grain yield efficiently in the conditions of nitrogen use with air temperature and rainfall in crop systems.
id UFCG-1_d91f0c1b279c9e89b3a1f9c57a8a9a0a
oai_identifier_str oai:scielo:S1415-43662020000100044
network_acronym_str UFCG-1
network_name_str Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
repository_id_str
spelling Simulation of wheat yield by nitrogen and nonlinearity of environmental conditionsTriticum aestivumtemperatureprecipitationfuzzy logicmodelingABSTRACT Fuzzy logic can simulate wheat productivity by assisting crop predictability. The objective of the study is the use of fuzzy logic to simulate wheat yield in the conditions of nitrogen use, together with the effects of air temperature and rainfall, in the main cereal succession systems in Southern Brazil. The study was conducted in the years 2014, 2015 and 2016, in Augusto Pestana, RS, Brazil. The experimental design was a randomized block design with four repetitions in a 4 x 3 factorial scheme for N-fertilizer doses (0, 30, 60, 120 kg ha-1) and nutrient supply forms [100% in phenological stage V3 (third expanded leaf); (70%/30%) in the phenological stage V3/V6 (third and sixth expanded leaf) and; fractionated (70%/30%) at the phenological stage V3/E (third expanded leaf and beginning of grain filling)], respectively, in the soybean/wheat and corn/wheat systems. The pertinence functions and the linguistic values ​​established for the input and output variables are adequate for the use of fuzzy logic. Fuzzy logic simulates wheat grain yield efficiently in the conditions of nitrogen use with air temperature and rainfall in crop systems.Departamento de Engenharia Agrícola - UFCG2020-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662020000100044Revista Brasileira de Engenharia Agrícola e Ambiental v.24 n.1 2020reponame:Revista Brasileira de Engenharia Agrícola e Ambiental (Online)instname:Universidade Federal de Campina Grande (UFCG)instacron:UFCG10.1590/1807-1929/agriambi.v24n1p44-51info:eu-repo/semantics/openAccessTrautmann,Ana P. B.Silva,José A. G. daBinelo,Manuel O.Valdiero,Antonio C.Henrichsen,LuanaBasso,Natiane C. F.eng2019-12-04T00:00:00Zoai:scielo:S1415-43662020000100044Revistahttp://www.scielo.br/rbeaaPUBhttps://old.scielo.br/oai/scielo-oai.php||agriambi@agriambi.com.br1807-19291415-4366opendoar:2019-12-04T00:00Revista Brasileira de Engenharia Agrícola e Ambiental (Online) - Universidade Federal de Campina Grande (UFCG)false
dc.title.none.fl_str_mv Simulation of wheat yield by nitrogen and nonlinearity of environmental conditions
title Simulation of wheat yield by nitrogen and nonlinearity of environmental conditions
spellingShingle Simulation of wheat yield by nitrogen and nonlinearity of environmental conditions
Trautmann,Ana P. B.
Triticum aestivum
temperature
precipitation
fuzzy logic
modeling
title_short Simulation of wheat yield by nitrogen and nonlinearity of environmental conditions
title_full Simulation of wheat yield by nitrogen and nonlinearity of environmental conditions
title_fullStr Simulation of wheat yield by nitrogen and nonlinearity of environmental conditions
title_full_unstemmed Simulation of wheat yield by nitrogen and nonlinearity of environmental conditions
title_sort Simulation of wheat yield by nitrogen and nonlinearity of environmental conditions
author Trautmann,Ana P. B.
author_facet Trautmann,Ana P. B.
Silva,José A. G. da
Binelo,Manuel O.
Valdiero,Antonio C.
Henrichsen,Luana
Basso,Natiane C. F.
author_role author
author2 Silva,José A. G. da
Binelo,Manuel O.
Valdiero,Antonio C.
Henrichsen,Luana
Basso,Natiane C. F.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Trautmann,Ana P. B.
Silva,José A. G. da
Binelo,Manuel O.
Valdiero,Antonio C.
Henrichsen,Luana
Basso,Natiane C. F.
dc.subject.por.fl_str_mv Triticum aestivum
temperature
precipitation
fuzzy logic
modeling
topic Triticum aestivum
temperature
precipitation
fuzzy logic
modeling
description ABSTRACT Fuzzy logic can simulate wheat productivity by assisting crop predictability. The objective of the study is the use of fuzzy logic to simulate wheat yield in the conditions of nitrogen use, together with the effects of air temperature and rainfall, in the main cereal succession systems in Southern Brazil. The study was conducted in the years 2014, 2015 and 2016, in Augusto Pestana, RS, Brazil. The experimental design was a randomized block design with four repetitions in a 4 x 3 factorial scheme for N-fertilizer doses (0, 30, 60, 120 kg ha-1) and nutrient supply forms [100% in phenological stage V3 (third expanded leaf); (70%/30%) in the phenological stage V3/V6 (third and sixth expanded leaf) and; fractionated (70%/30%) at the phenological stage V3/E (third expanded leaf and beginning of grain filling)], respectively, in the soybean/wheat and corn/wheat systems. The pertinence functions and the linguistic values ​​established for the input and output variables are adequate for the use of fuzzy logic. Fuzzy logic simulates wheat grain yield efficiently in the conditions of nitrogen use with air temperature and rainfall in crop systems.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662020000100044
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662020000100044
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1807-1929/agriambi.v24n1p44-51
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Departamento de Engenharia Agrícola - UFCG
publisher.none.fl_str_mv Departamento de Engenharia Agrícola - UFCG
dc.source.none.fl_str_mv Revista Brasileira de Engenharia Agrícola e Ambiental v.24 n.1 2020
reponame:Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
instname:Universidade Federal de Campina Grande (UFCG)
instacron:UFCG
instname_str Universidade Federal de Campina Grande (UFCG)
instacron_str UFCG
institution UFCG
reponame_str Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
collection Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
repository.name.fl_str_mv Revista Brasileira de Engenharia Agrícola e Ambiental (Online) - Universidade Federal de Campina Grande (UFCG)
repository.mail.fl_str_mv ||agriambi@agriambi.com.br
_version_ 1750297687280844800