Associative administration of cimetidine and exogenous melatonin on the endometrial receptors of estrogen, collagen and hormone levels in adult rats
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Pesquisa e Ensino em Ciências Exatas e da Natureza |
Texto Completo: | https://cfp.revistas.ufcg.edu.br/cfp/index.php/RPECEN/article/view/1597 |
Resumo: | Cloridrato de cimetidina, um bloqueador de receptores H2 das células parietais gástricas, que age reduzindo a secreção de ácido no estômago e tem sido estudado como substância xenoestrogênica. O uso crônico da cimetidina produz distúrbios homonais e toxidade no aparelho reprodutor masculino, além de reduzir o estradiol 2-hidroxilado e aumentar níveis séricos de estradiol e prolactina em mulheres, levando a hiperprolactinemia, que pode ser fator de risco para o câncer. A melatonina, neurohormônio sintetizado pela glândula pineal tem importante papel na função reprodutiva, regulando a produção de estrógeno, progesterrona e prolactina. O estudo testou a hipótese de que a melatonina pode bloquear ou reduzir os efeitos estrogênicos da cimetidina no estroma uterino, interferindo nos receptores de estrógeno, no teor de fibras colágenas e nos níveis hormonais em ratas adultas. Quarenta e cinco (45) ratas albinas divididas em três grupos: I – tratadas com placebo (controle); II – tratado com cimetidina (50 mg/kg) e III – tratado com cimetidina (50 mg/kg) associada à melatonina (200 μg/100 g). Os experimentos foram conduzidos por 7, 14 e 19 dias. Nos grupos tratados apenas com cimetidina, observou-se marcações mais intensas dos receptores REα, maior distribuição das fibras colágenas no endométrio, elevação dos níveis séricos de estrogênio, prolactina e redução da progesterona, nos animais tratados por 19 dias. Na associação cimetidina e melatonina, acredita-se que a melatonina bloqueou esses efeitos. A melatonina tem atividade citoprotetora para efeitos crônicos da cimetidina no estroma endometrial, por reduzir ou prevenir o aumento da síntese de fibras de colágeno pelos fibroblastos regulando a atividade do estrogênio sérico, bem como a expressão de seus receptores endometriais, além de manter os níveis normais de progesterona e prolactina.Palavras chave: Melatonina, receptor de estrógeno, xenoestrógeno, morfometria, níveis hormonais. |
id |
UFCG-5_bfcd262571eaa19795c29ad4e9d53364 |
---|---|
oai_identifier_str |
oai:ojs.cfp.revistas.ufcg.edu.br:article/1597 |
network_acronym_str |
UFCG-5 |
network_name_str |
Pesquisa e Ensino em Ciências Exatas e da Natureza |
repository_id_str |
|
spelling |
Associative administration of cimetidine and exogenous melatonin on the endometrial receptors of estrogen, collagen and hormone levels in adult ratsCloridrato de cimetidina, um bloqueador de receptores H2 das células parietais gástricas, que age reduzindo a secreção de ácido no estômago e tem sido estudado como substância xenoestrogênica. O uso crônico da cimetidina produz distúrbios homonais e toxidade no aparelho reprodutor masculino, além de reduzir o estradiol 2-hidroxilado e aumentar níveis séricos de estradiol e prolactina em mulheres, levando a hiperprolactinemia, que pode ser fator de risco para o câncer. A melatonina, neurohormônio sintetizado pela glândula pineal tem importante papel na função reprodutiva, regulando a produção de estrógeno, progesterrona e prolactina. O estudo testou a hipótese de que a melatonina pode bloquear ou reduzir os efeitos estrogênicos da cimetidina no estroma uterino, interferindo nos receptores de estrógeno, no teor de fibras colágenas e nos níveis hormonais em ratas adultas. Quarenta e cinco (45) ratas albinas divididas em três grupos: I – tratadas com placebo (controle); II – tratado com cimetidina (50 mg/kg) e III – tratado com cimetidina (50 mg/kg) associada à melatonina (200 μg/100 g). Os experimentos foram conduzidos por 7, 14 e 19 dias. Nos grupos tratados apenas com cimetidina, observou-se marcações mais intensas dos receptores REα, maior distribuição das fibras colágenas no endométrio, elevação dos níveis séricos de estrogênio, prolactina e redução da progesterona, nos animais tratados por 19 dias. Na associação cimetidina e melatonina, acredita-se que a melatonina bloqueou esses efeitos. A melatonina tem atividade citoprotetora para efeitos crônicos da cimetidina no estroma endometrial, por reduzir ou prevenir o aumento da síntese de fibras de colágeno pelos fibroblastos regulando a atividade do estrogênio sérico, bem como a expressão de seus receptores endometriais, além de manter os níveis normais de progesterona e prolactina.Palavras chave: Melatonina, receptor de estrógeno, xenoestrógeno, morfometria, níveis hormonais.Unidade Acadêmica de Ciências Exatas e da Natureza/CFP/UFCGSilva, Sandra Maria Souza daElias, Laíse de SouzaSilva, Romildo Luciano daMedeiros, Paloma Lys deVieira, Jeymesson Raphael CardosoTeixeira, Álvaro Aguiar CoelhoWanderley-Teixeira, Valéria2020-12-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://cfp.revistas.ufcg.edu.br/cfp/index.php/RPECEN/article/view/159710.29215/pecen.v4i0.1597Pesquisa e Ensino em Ciências Exatas e da Natureza; v. 4 (2020): Pesquisa e Ensino em Ciências Exatas e da Natureza; 01-142526-823610.29215/pecen.v4i0reponame:Pesquisa e Ensino em Ciências Exatas e da Naturezainstname:Universidade Federal de Campina Grande (UFCG)instacron:UFCGporhttps://cfp.revistas.ufcg.edu.br/cfp/index.php/RPECEN/article/view/1597/pdf/*ref*/Adriaens I., Jacquet P., Cortvrindt R., Janssen K. & Smitz J. (2006) Melatonin has dose-dependent effects on folliculogenesis, oocyte maturation capacity and steroidogenesis. Toxicology, 228: 333–343. I: http://dx.doi.org/10.1016/j.tox.2006.09.018/*ref*/Akingbemi B.T., Sottas C.M., Koulova A.I., Klinefelter G.R. & Hardy M.P. (2004) The inhibition of testicular steroidogenesis by the xenoestrogen bisphenol A is associated with reduced pituitary luteinizing hormone secretion and decreased steroidogenic enzyme gene expression in rat Leydig cells. Endocrinology, 145(2): 592–603. http://dx.doi.org/10.1210/en.2003-1174/*ref*/Bredfeldt T.G., Greathouse K.L., Safe S.H., Hung M.C., Bedford M.T. & Walker C.L. (2010) Xenoestrogen-induced regulation of EZH2 and histone methylation via estrogen receptor signaling to PI3K/AKT. Molecular Endocrinology, 24(5): 993–1006. https://doi.org/10.1210/me.2009-0438/*ref*/Bromer J.G., Zhou Y., Taylor M.B., Doherty L. & Taylor H.S. (2010) Bisphenol-A exposure in utero leads to epigenetic alterations in the developmental programming of uterine estrogen response. Federation of American Societies for Experimental Biology, 24: 2273–2280. https://doi.org/10.1096/fj.09-140533/*ref*/Christin-Maître S., Delemer B., Touraine P. & Young J. (2007) Prolactinoma and estrogens: pregnancy, contraception and hormonal replacement therapy. Annales d'Endocrinologie, 68: 106–112. https://doi.org/10.1016/j.ando.2007.03.008/*ref*/Close F.T. & Freeman M.E. (1997) Effects of ovarian steroid hormones on dopamine-controlled prolactin secretory responses in vitro. Neuroendocrinology, 65: 430–435. https://doi.org/10.1159/000127206/*ref*/Cotton R.B., Shah L.P., Stanley D.P., Ehinger N.J., Brown N., Shelton E.L., Slaughter J.C., Baldwin H.S., Paria B.C. & Reese J. (2013) Cimetidine–associated patent ductus arteriosus is mediated via a cytochrome P450 mechanism independent of H2 receptor antagonism. Journal of Molecular and Cellular Cardiology, 59: 86–94. https://doi.org/10.1016/j.yjmcc.2013.02.010/*ref*/Dair E.L., Simões R.S., Simões M.J., Romeu L.R.G., Oliveira-Filho R.M. & Haidar M.A. (2008) Effects of melatonin on the endometrial morphology and embryo implantation in rats. Fertility and Sterility, 89(5): 1299–1305. https://doi.org/10.1016/j.fertnstert.2007.03.050/*ref*/Deroo B.J. & Korach K.S. (2006) Estrogen receptors and human disease. The Journal of Clinical Investigation, 116(3): 561–570. https://doi.org/10.1172/JCI27987/*ref*/Fluttert M., Dalm S. & Oitzl M.S. (2000) A refined method for sequencial blood sampling by tail incision in rats. Laboratory Animals, 34(4): 372–378. https://doi.org/10.1258/002367700780387714/*ref*/França L.R., Leal M.C., Sasso-Cerri E., Vasconcelos A., Debeljuk L. & Russell L.D. (2000) Cimetidine (Tagamet®) is a reproductive toxicant in male rats affecting peritubular cells. Biology of Reproduction, 63: 1403–1412. https://doi.org/10.1095/biolreprod63.5.1403/*ref*/Freeman M.E., Kanyicska B., Lerant A. & Nagy G. (2000) Prolactin: structure, function, and regulation of secretion. Physiological Reviews, 80(4): 1523–1631. https://doi.org/10.1152/physrev.2000.80.4.1523/*ref*/Hankinson S.E., Willett W.C., Michaud D.S., Manson J.E., Colditz G.A. & Longcope C. (1999) Plasma prolactin levels and subsequent risk of breast cancer in postmenopausal women. Journal of the National Cancer Institute, 91(7): 629–634. https://doi.org/10.1093/jnci/91.7.629/*ref*/Jesus T.B. & Carvalho C.E.V. (2008) Using biomarkers in fish to detect environmental contamination by mercury. Oecologia Australis, 12: 680–693./*ref*/Karadayian A.G., Mac Laughlin M.A. & Cutera R.A. (2012) Estrogen blocks the protective action of melatonin in a behavioral model of ethanol-induced hangover in mice. Physiology & Behavior, 107(2): 181–186. https://doi.org/10.1016/j.physbeh.2012.07.003/*ref*/Katayama S. & Fishman J. (1982) 2-Hydroxyestrone suppresses and 2-methoxyestrone augments the preovulatory prolactin surge in the cycling rat. Endocrinology, 110(4): 1448–1450. https://doi.org/10.1210/endo-110-4-1448/*ref*/Koshimizu J.Y., Beltrame F.L., Pizzol J.P., Paulo S.C., Caneguim B.H. & Sasso-Cerri E. (2013) NF-kB overexpression and decreased immunoexpression of AR in the muscular layer is related to structural damages and apoptosis in cimetidine-treated rat vas deferens. Reproductive Biology and Endocrinology, 11: 29. http://dx.doi.org/10.1186/1477-7827-11-29/*ref*/Kuiper G.G., Enmark E., Pelto-Huikko M., Nilsson S. & Gustafsson J.A. (1996) Cloning of a novel estrogen receptor expressed in rat prostate and ovary. Proceedings of the National Academy of Sciences, 93(12): 5925–5930. http://dx.doi.org/10.1073/pnas.93.12.5925/*ref*/Kuiper G.G., Carlsson B., Grandien K., Enmark E., Haggblad J., Nilsson S. & Gustafsson J.A. (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors α and β. Endocrinology, 138(3): 863–870. http://dx.doi.org/10.1210/endo.138.3.4979/*ref*/Maekawa R., Tamura H., Taniguchi K., Taketani T. & Sugino A. (2007) Role and regulation of maternal melatonin during pregnancy in rats. Biology of Reproduction, 77: 105–110. https://doi.org/10.1093/biolreprod/77.s1.105b/*ref*/Maganhin C.C., Ferraz A.A.C., Halley J.H., Fuchs L.F.P., Oliveira-Júnior I.S. & Simões M.J. (2008) Efeitos da melatonina no sistema genital feminino: breve revisão. Revista da Associação Medica Brasileira, 54(3): 267–271. https://doi.org/10.1590/S0104-42302008000300022/*ref*/Martin I., Torres Neto R., Oba E., Buratini J.Jr., Binelli M. & Laufer-Amorim R. (2008) Immunohistochemical detection of receptors for oestrogen and progesterone in endometrial glands and stroma during the oestrous cycle in Nelore (Bos taurus indicus) cows. Reproduction in Domestic Animal, 43(4): 415–421. https://doi.org/10.1111/j.1439-0531.2007.00928.x/*ref*/Medeiros J.P., Wanderley-Teixeira V., Teixeira A.A.C., Baratella-Evencio L. & Evencio Neto J. (2003) Ultrastructural analysis of pinealectomy and lack of light influence over collagen in the endometrium of rats. International Journal of Morphology, 21(3): 231–235. http://dx.doi.org/10.4067/S0717-95022003000300008/*ref*/Michnovicz J.J. & Galbraith R.A. (1991) Cimetidine inhibits catechol estrogen metabolism in women. Metabolism Clinical and Experimental, 40(2): 170–174. https://doi.org/10.1016/0026-0495(91)90169-W/*ref*/Mosselman S., Polman J. & Dijkema R. (1996) ERb: identification and characterization of a novel human estrogen receptor. FEBS Letters, 392: 49–53. http://dx.doi.org/10.1016/0014-5793(96)00782-x/*ref*/Myllyharrju J. & Kivirikko K.L. (2004) Collagens, modifying enzymes and their mutations in humans, flies and worms. Trens in Genetics, 20: 33–43. http://dx.doi.org/10.1016/j.tig.2003.11.004/*ref*/Nahas E.A.P., Nahás-Neto J., Pontes A., Dias R. & Fernandes C.E. (2006) Estados hiperprolactinêmicos – inter-relações com o psiquismo. Revista de Psiquiatria Clínica, 33: 68–73. http://dx.doi.org/10.1590/S0101-60832006000200006/*ref*/Oxlund B.S., Ortoft G., Brüel A., Danielsen C., Bor P. & Oxlund H. (2010) Collagen concentration and biomechanical properties of samples from the lower uterine cervix in relation to age and parity in non-pregnant women. Reproductive Biology and Endocrinology, 8: 82–90. http://dx.doi.org/10.1186/1477-7827-8-82/*ref*/Robinson R.S., Mann G.E., Lamming G.E. & Wathes D.C. (2010) Expression of oxytocin, oestrogen and progesterone receptors in uterine biopsy samples throughout the oestrous cycle and early pregnancy in cows. Journal of Reproduction and Fertility, 122: 965–979. http://dx.doi.org/10.1530/rep.0.1220965/*ref*/Rosselli M., Reinhart K., Imthurn B., Keller P.J. & Dubey R.K. (2000) Cellular and biochemical mechanisms by which environmental estrogens may influence the reproduction function. Human Reproduction, 6: 332–350. http://dx.doi.org/10.1093/humupd/6.4.332/*ref*/Saiyn U. (2012) EPR analysis of gamma irradiated single crystal cimetidine. Journal of Molecular Structure, 1031: 132–137. http://dx.doi.org/10.1016/j.molstruc.2012.07.022/*ref*/Sasso-Cerri E. & Cerri O.S. (2008) Morphological evidences indicate that the interference of cimetidine on the peritubular components is responsible for detachment and apoptosis of Sertoli cells. Reproductive Biology and Endocrinology, 6:18. http://dx.doi.org/10.1186/1477-7827-6-18/*ref*/Silva R.D., Glazebrook M.A., Campos V.N. & Vascocelos A.C. (2011) Achilles tendinosis – a morphometricalstydy in a rat model. International Journal of Clinical and Experimental Pathology, 4: 683–691./*ref*/Sinha R.B., Banerjee P. & Ganguly A.K. (2006) Serum concentration of testosterone, epididymal mast cell population and histamine content in relation to sperm count and their motility in albino rats following H2 receptor blocker treatment. Nepal Medical College Journal, 8: 36–39./*ref*/Surazynski A., Miltyk W., Wolczynski S. & Palka J. (2013) The effect of prolactin and estrogen cross-talk on prolidase-dependent signaling in MCF-7 cells. Neoplasma, 60: 355–363. http://dx.doi.org/10.4149/neo_2013_047/*ref*/Takeshi S., Kai H. & Suita S. (2002) Effects of the prenatal administration of cimetidine on testicular descent and genital differentiation in rats. Surgery 131: 301–305. http://dx.doi.org/10.1067/msy.2002.119961/*ref*/Taketani T., Tamura H., Takasaki A., Lee L., Kizuka F. & Tamura I. (2011) Protective role of melatonin in progesterone production by human luteal cells. Journal Pineal Research, 51(2): 207–213. http://dx.doi.org/10.1111/j.1600-079X.2011.00878.x/*ref*/Teixeira A.A.C., Simoes M.J., Evencio-Neto J. & Wanderley-Teixeira V. (2002) Morphologic aspects of endometrium in the estrus phase, of pinealectomized rats. Revista Chilena de Antomia, 20(2): 145–159. http://dx.doi.org/10.4067/S0716-98682002000200005/*ref*/Teixeira A.A.C., Simões M.J., Wanderley-Teixeira V. & Soares J.M.Jr. (2004) Evaluation of the implantation in pinealectomized and/or submitted to the constant illumination rats. International Journal of Morphology, 22(3): 189–194. http://dx.doi.org/10.4067/S0717-95022004000300003/*ref*/Uygur R., Aktas C., Caglar V., Uigur E., Erdogan H. & Ozen A.O. (2013) Protective effects of melatonin against arsenic-induced apoptosis and oxidative stress in rat testes. Toxicology and Industrial Health, 32(5): 848–859. http://dx.doi.org/10.1177/0748233713512891/*ref*/Xiang S., Mao L., Yuan L., Duplessis T., Jones F., Hoyle G.W., Frasch T., Dauchy R., Blask D., Chakravarty G. & Hill S.M. (2012) Impaired mouse mammary gland growth and development is mediated by melatonin and its MT1 G protein-coupled receptor via repression of ERα, Akt1, and Stat5. Journal of Pineal Research, 53: 307–318. http://dx.doi.org/10.1111/j.1600-079X.2012.01000.x/*ref*/Zarazaga L., Celi I., Guzmán J.L. & Malpaux B. (2011) The effect of nutrition on the neural mechanisms potentially involved in melatonin-stimulated LH secretion in female Mediterranean goats. The Journal of Endocrinology, 211: 263–272. http://dx.doi.org/10.1530/JOE-11-0225/*ref*/Zarazaga L., Celi I., Guzmán J.L. & Malpaux B. (2012) Reproductive performance is improved during seasonal anoestrus when female and male Murciano-Granadina goats receive melatonin implants and in Payoya goats when females are thus treated. Reproduction in Domestic Animals, 47(3): 436–442. https://doi.org/10.1111/j.1439-0531.2011.01899.x/*ref*/Zhong L., Xiang X., Lu W., Zhau P. & Wang (2013) Interference of xenoestrogen o,p'-DDT on the action of endogenous estrogens at environmentally realistic concentrations. Bulletin of Environmental Contamination and Toxicology, 90: 591–595. https://doi.org/10.1007/s00128-013-0976-9/*ref*/Zuloaga G.Z., Zuloaga K.L., Hinds L.R., Carbone D.L. & Handa R.J. (2013) Estrogen receptor β expression in the mouse forebrain: Age and sex differences. Journal of Comparative Neurology, 522: 358–371. https://doi.org/10.1002/cne.23400Direitos autorais 2020 Autor e Revista mantêm os direitos da publicaçãoinfo:eu-repo/semantics/openAccess2022-08-31T14:45:02Zoai:ojs.cfp.revistas.ufcg.edu.br:article/1597Revistahttps://cfp.revistas.ufcg.edu.br/cfp/index.php/RPECENPUBhttps://cfp.revistas.ufcg.edu.br/cfp/index.php/RPECEN/oai||cienciasexatasenatureza@gmail.com2526-82362526-8236opendoar:2022-08-31T14:45:02Pesquisa e Ensino em Ciências Exatas e da Natureza - Universidade Federal de Campina Grande (UFCG)false |
dc.title.none.fl_str_mv |
Associative administration of cimetidine and exogenous melatonin on the endometrial receptors of estrogen, collagen and hormone levels in adult rats |
title |
Associative administration of cimetidine and exogenous melatonin on the endometrial receptors of estrogen, collagen and hormone levels in adult rats |
spellingShingle |
Associative administration of cimetidine and exogenous melatonin on the endometrial receptors of estrogen, collagen and hormone levels in adult rats Silva, Sandra Maria Souza da |
title_short |
Associative administration of cimetidine and exogenous melatonin on the endometrial receptors of estrogen, collagen and hormone levels in adult rats |
title_full |
Associative administration of cimetidine and exogenous melatonin on the endometrial receptors of estrogen, collagen and hormone levels in adult rats |
title_fullStr |
Associative administration of cimetidine and exogenous melatonin on the endometrial receptors of estrogen, collagen and hormone levels in adult rats |
title_full_unstemmed |
Associative administration of cimetidine and exogenous melatonin on the endometrial receptors of estrogen, collagen and hormone levels in adult rats |
title_sort |
Associative administration of cimetidine and exogenous melatonin on the endometrial receptors of estrogen, collagen and hormone levels in adult rats |
author |
Silva, Sandra Maria Souza da |
author_facet |
Silva, Sandra Maria Souza da Elias, Laíse de Souza Silva, Romildo Luciano da Medeiros, Paloma Lys de Vieira, Jeymesson Raphael Cardoso Teixeira, Álvaro Aguiar Coelho Wanderley-Teixeira, Valéria |
author_role |
author |
author2 |
Elias, Laíse de Souza Silva, Romildo Luciano da Medeiros, Paloma Lys de Vieira, Jeymesson Raphael Cardoso Teixeira, Álvaro Aguiar Coelho Wanderley-Teixeira, Valéria |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
|
dc.contributor.author.fl_str_mv |
Silva, Sandra Maria Souza da Elias, Laíse de Souza Silva, Romildo Luciano da Medeiros, Paloma Lys de Vieira, Jeymesson Raphael Cardoso Teixeira, Álvaro Aguiar Coelho Wanderley-Teixeira, Valéria |
description |
Cloridrato de cimetidina, um bloqueador de receptores H2 das células parietais gástricas, que age reduzindo a secreção de ácido no estômago e tem sido estudado como substância xenoestrogênica. O uso crônico da cimetidina produz distúrbios homonais e toxidade no aparelho reprodutor masculino, além de reduzir o estradiol 2-hidroxilado e aumentar níveis séricos de estradiol e prolactina em mulheres, levando a hiperprolactinemia, que pode ser fator de risco para o câncer. A melatonina, neurohormônio sintetizado pela glândula pineal tem importante papel na função reprodutiva, regulando a produção de estrógeno, progesterrona e prolactina. O estudo testou a hipótese de que a melatonina pode bloquear ou reduzir os efeitos estrogênicos da cimetidina no estroma uterino, interferindo nos receptores de estrógeno, no teor de fibras colágenas e nos níveis hormonais em ratas adultas. Quarenta e cinco (45) ratas albinas divididas em três grupos: I – tratadas com placebo (controle); II – tratado com cimetidina (50 mg/kg) e III – tratado com cimetidina (50 mg/kg) associada à melatonina (200 μg/100 g). Os experimentos foram conduzidos por 7, 14 e 19 dias. Nos grupos tratados apenas com cimetidina, observou-se marcações mais intensas dos receptores REα, maior distribuição das fibras colágenas no endométrio, elevação dos níveis séricos de estrogênio, prolactina e redução da progesterona, nos animais tratados por 19 dias. Na associação cimetidina e melatonina, acredita-se que a melatonina bloqueou esses efeitos. A melatonina tem atividade citoprotetora para efeitos crônicos da cimetidina no estroma endometrial, por reduzir ou prevenir o aumento da síntese de fibras de colágeno pelos fibroblastos regulando a atividade do estrogênio sérico, bem como a expressão de seus receptores endometriais, além de manter os níveis normais de progesterona e prolactina.Palavras chave: Melatonina, receptor de estrógeno, xenoestrógeno, morfometria, níveis hormonais. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-20 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://cfp.revistas.ufcg.edu.br/cfp/index.php/RPECEN/article/view/1597 10.29215/pecen.v4i0.1597 |
url |
https://cfp.revistas.ufcg.edu.br/cfp/index.php/RPECEN/article/view/1597 |
identifier_str_mv |
10.29215/pecen.v4i0.1597 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://cfp.revistas.ufcg.edu.br/cfp/index.php/RPECEN/article/view/1597/pdf /*ref*/Adriaens I., Jacquet P., Cortvrindt R., Janssen K. & Smitz J. (2006) Melatonin has dose-dependent effects on folliculogenesis, oocyte maturation capacity and steroidogenesis. Toxicology, 228: 333–343. I: http://dx.doi.org/10.1016/j.tox.2006.09.018 /*ref*/Akingbemi B.T., Sottas C.M., Koulova A.I., Klinefelter G.R. & Hardy M.P. (2004) The inhibition of testicular steroidogenesis by the xenoestrogen bisphenol A is associated with reduced pituitary luteinizing hormone secretion and decreased steroidogenic enzyme gene expression in rat Leydig cells. Endocrinology, 145(2): 592–603. http://dx.doi.org/10.1210/en.2003-1174 /*ref*/Bredfeldt T.G., Greathouse K.L., Safe S.H., Hung M.C., Bedford M.T. & Walker C.L. (2010) Xenoestrogen-induced regulation of EZH2 and histone methylation via estrogen receptor signaling to PI3K/AKT. Molecular Endocrinology, 24(5): 993–1006. https://doi.org/10.1210/me.2009-0438 /*ref*/Bromer J.G., Zhou Y., Taylor M.B., Doherty L. & Taylor H.S. (2010) Bisphenol-A exposure in utero leads to epigenetic alterations in the developmental programming of uterine estrogen response. Federation of American Societies for Experimental Biology, 24: 2273–2280. https://doi.org/10.1096/fj.09-140533 /*ref*/Christin-Maître S., Delemer B., Touraine P. & Young J. (2007) Prolactinoma and estrogens: pregnancy, contraception and hormonal replacement therapy. Annales d'Endocrinologie, 68: 106–112. https://doi.org/10.1016/j.ando.2007.03.008 /*ref*/Close F.T. & Freeman M.E. (1997) Effects of ovarian steroid hormones on dopamine-controlled prolactin secretory responses in vitro. Neuroendocrinology, 65: 430–435. https://doi.org/10.1159/000127206 /*ref*/Cotton R.B., Shah L.P., Stanley D.P., Ehinger N.J., Brown N., Shelton E.L., Slaughter J.C., Baldwin H.S., Paria B.C. & Reese J. (2013) Cimetidine–associated patent ductus arteriosus is mediated via a cytochrome P450 mechanism independent of H2 receptor antagonism. Journal of Molecular and Cellular Cardiology, 59: 86–94. https://doi.org/10.1016/j.yjmcc.2013.02.010 /*ref*/Dair E.L., Simões R.S., Simões M.J., Romeu L.R.G., Oliveira-Filho R.M. & Haidar M.A. (2008) Effects of melatonin on the endometrial morphology and embryo implantation in rats. Fertility and Sterility, 89(5): 1299–1305. https://doi.org/10.1016/j.fertnstert.2007.03.050 /*ref*/Deroo B.J. & Korach K.S. (2006) Estrogen receptors and human disease. The Journal of Clinical Investigation, 116(3): 561–570. https://doi.org/10.1172/JCI27987 /*ref*/Fluttert M., Dalm S. & Oitzl M.S. (2000) A refined method for sequencial blood sampling by tail incision in rats. Laboratory Animals, 34(4): 372–378. https://doi.org/10.1258/002367700780387714 /*ref*/França L.R., Leal M.C., Sasso-Cerri E., Vasconcelos A., Debeljuk L. & Russell L.D. (2000) Cimetidine (Tagamet®) is a reproductive toxicant in male rats affecting peritubular cells. Biology of Reproduction, 63: 1403–1412. https://doi.org/10.1095/biolreprod63.5.1403 /*ref*/Freeman M.E., Kanyicska B., Lerant A. & Nagy G. (2000) Prolactin: structure, function, and regulation of secretion. Physiological Reviews, 80(4): 1523–1631. https://doi.org/10.1152/physrev.2000.80.4.1523 /*ref*/Hankinson S.E., Willett W.C., Michaud D.S., Manson J.E., Colditz G.A. & Longcope C. (1999) Plasma prolactin levels and subsequent risk of breast cancer in postmenopausal women. Journal of the National Cancer Institute, 91(7): 629–634. https://doi.org/10.1093/jnci/91.7.629 /*ref*/Jesus T.B. & Carvalho C.E.V. (2008) Using biomarkers in fish to detect environmental contamination by mercury. Oecologia Australis, 12: 680–693. /*ref*/Karadayian A.G., Mac Laughlin M.A. & Cutera R.A. (2012) Estrogen blocks the protective action of melatonin in a behavioral model of ethanol-induced hangover in mice. Physiology & Behavior, 107(2): 181–186. https://doi.org/10.1016/j.physbeh.2012.07.003 /*ref*/Katayama S. & Fishman J. (1982) 2-Hydroxyestrone suppresses and 2-methoxyestrone augments the preovulatory prolactin surge in the cycling rat. Endocrinology, 110(4): 1448–1450. https://doi.org/10.1210/endo-110-4-1448 /*ref*/Koshimizu J.Y., Beltrame F.L., Pizzol J.P., Paulo S.C., Caneguim B.H. & Sasso-Cerri E. (2013) NF-kB overexpression and decreased immunoexpression of AR in the muscular layer is related to structural damages and apoptosis in cimetidine-treated rat vas deferens. Reproductive Biology and Endocrinology, 11: 29. http://dx.doi.org/10.1186/1477-7827-11-29 /*ref*/Kuiper G.G., Enmark E., Pelto-Huikko M., Nilsson S. & Gustafsson J.A. (1996) Cloning of a novel estrogen receptor expressed in rat prostate and ovary. Proceedings of the National Academy of Sciences, 93(12): 5925–5930. http://dx.doi.org/10.1073/pnas.93.12.5925 /*ref*/Kuiper G.G., Carlsson B., Grandien K., Enmark E., Haggblad J., Nilsson S. & Gustafsson J.A. (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors α and β. Endocrinology, 138(3): 863–870. http://dx.doi.org/10.1210/endo.138.3.4979 /*ref*/Maekawa R., Tamura H., Taniguchi K., Taketani T. & Sugino A. (2007) Role and regulation of maternal melatonin during pregnancy in rats. Biology of Reproduction, 77: 105–110. https://doi.org/10.1093/biolreprod/77.s1.105b /*ref*/Maganhin C.C., Ferraz A.A.C., Halley J.H., Fuchs L.F.P., Oliveira-Júnior I.S. & Simões M.J. (2008) Efeitos da melatonina no sistema genital feminino: breve revisão. Revista da Associação Medica Brasileira, 54(3): 267–271. https://doi.org/10.1590/S0104-42302008000300022 /*ref*/Martin I., Torres Neto R., Oba E., Buratini J.Jr., Binelli M. & Laufer-Amorim R. (2008) Immunohistochemical detection of receptors for oestrogen and progesterone in endometrial glands and stroma during the oestrous cycle in Nelore (Bos taurus indicus) cows. Reproduction in Domestic Animal, 43(4): 415–421. https://doi.org/10.1111/j.1439-0531.2007.00928.x /*ref*/Medeiros J.P., Wanderley-Teixeira V., Teixeira A.A.C., Baratella-Evencio L. & Evencio Neto J. (2003) Ultrastructural analysis of pinealectomy and lack of light influence over collagen in the endometrium of rats. International Journal of Morphology, 21(3): 231–235. http://dx.doi.org/10.4067/S0717-95022003000300008 /*ref*/Michnovicz J.J. & Galbraith R.A. (1991) Cimetidine inhibits catechol estrogen metabolism in women. Metabolism Clinical and Experimental, 40(2): 170–174. https://doi.org/10.1016/0026-0495(91)90169-W /*ref*/Mosselman S., Polman J. & Dijkema R. (1996) ERb: identification and characterization of a novel human estrogen receptor. FEBS Letters, 392: 49–53. http://dx.doi.org/10.1016/0014-5793(96)00782-x /*ref*/Myllyharrju J. & Kivirikko K.L. (2004) Collagens, modifying enzymes and their mutations in humans, flies and worms. Trens in Genetics, 20: 33–43. http://dx.doi.org/10.1016/j.tig.2003.11.004 /*ref*/Nahas E.A.P., Nahás-Neto J., Pontes A., Dias R. & Fernandes C.E. (2006) Estados hiperprolactinêmicos – inter-relações com o psiquismo. Revista de Psiquiatria Clínica, 33: 68–73. http://dx.doi.org/10.1590/S0101-60832006000200006 /*ref*/Oxlund B.S., Ortoft G., Brüel A., Danielsen C., Bor P. & Oxlund H. (2010) Collagen concentration and biomechanical properties of samples from the lower uterine cervix in relation to age and parity in non-pregnant women. Reproductive Biology and Endocrinology, 8: 82–90. http://dx.doi.org/10.1186/1477-7827-8-82 /*ref*/Robinson R.S., Mann G.E., Lamming G.E. & Wathes D.C. (2010) Expression of oxytocin, oestrogen and progesterone receptors in uterine biopsy samples throughout the oestrous cycle and early pregnancy in cows. Journal of Reproduction and Fertility, 122: 965–979. http://dx.doi.org/10.1530/rep.0.1220965 /*ref*/Rosselli M., Reinhart K., Imthurn B., Keller P.J. & Dubey R.K. (2000) Cellular and biochemical mechanisms by which environmental estrogens may influence the reproduction function. Human Reproduction, 6: 332–350. http://dx.doi.org/10.1093/humupd/6.4.332 /*ref*/Saiyn U. (2012) EPR analysis of gamma irradiated single crystal cimetidine. Journal of Molecular Structure, 1031: 132–137. http://dx.doi.org/10.1016/j.molstruc.2012.07.022 /*ref*/Sasso-Cerri E. & Cerri O.S. (2008) Morphological evidences indicate that the interference of cimetidine on the peritubular components is responsible for detachment and apoptosis of Sertoli cells. Reproductive Biology and Endocrinology, 6:18. http://dx.doi.org/10.1186/1477-7827-6-18 /*ref*/Silva R.D., Glazebrook M.A., Campos V.N. & Vascocelos A.C. (2011) Achilles tendinosis – a morphometricalstydy in a rat model. International Journal of Clinical and Experimental Pathology, 4: 683–691. /*ref*/Sinha R.B., Banerjee P. & Ganguly A.K. (2006) Serum concentration of testosterone, epididymal mast cell population and histamine content in relation to sperm count and their motility in albino rats following H2 receptor blocker treatment. Nepal Medical College Journal, 8: 36–39. /*ref*/Surazynski A., Miltyk W., Wolczynski S. & Palka J. (2013) The effect of prolactin and estrogen cross-talk on prolidase-dependent signaling in MCF-7 cells. Neoplasma, 60: 355–363. http://dx.doi.org/10.4149/neo_2013_047 /*ref*/Takeshi S., Kai H. & Suita S. (2002) Effects of the prenatal administration of cimetidine on testicular descent and genital differentiation in rats. Surgery 131: 301–305. http://dx.doi.org/10.1067/msy.2002.119961 /*ref*/Taketani T., Tamura H., Takasaki A., Lee L., Kizuka F. & Tamura I. (2011) Protective role of melatonin in progesterone production by human luteal cells. Journal Pineal Research, 51(2): 207–213. http://dx.doi.org/10.1111/j.1600-079X.2011.00878.x /*ref*/Teixeira A.A.C., Simoes M.J., Evencio-Neto J. & Wanderley-Teixeira V. (2002) Morphologic aspects of endometrium in the estrus phase, of pinealectomized rats. Revista Chilena de Antomia, 20(2): 145–159. http://dx.doi.org/10.4067/S0716-98682002000200005 /*ref*/Teixeira A.A.C., Simões M.J., Wanderley-Teixeira V. & Soares J.M.Jr. (2004) Evaluation of the implantation in pinealectomized and/or submitted to the constant illumination rats. International Journal of Morphology, 22(3): 189–194. http://dx.doi.org/10.4067/S0717-95022004000300003 /*ref*/Uygur R., Aktas C., Caglar V., Uigur E., Erdogan H. & Ozen A.O. (2013) Protective effects of melatonin against arsenic-induced apoptosis and oxidative stress in rat testes. Toxicology and Industrial Health, 32(5): 848–859. http://dx.doi.org/10.1177/0748233713512891 /*ref*/Xiang S., Mao L., Yuan L., Duplessis T., Jones F., Hoyle G.W., Frasch T., Dauchy R., Blask D., Chakravarty G. & Hill S.M. (2012) Impaired mouse mammary gland growth and development is mediated by melatonin and its MT1 G protein-coupled receptor via repression of ERα, Akt1, and Stat5. Journal of Pineal Research, 53: 307–318. http://dx.doi.org/10.1111/j.1600-079X.2012.01000.x /*ref*/Zarazaga L., Celi I., Guzmán J.L. & Malpaux B. (2011) The effect of nutrition on the neural mechanisms potentially involved in melatonin-stimulated LH secretion in female Mediterranean goats. The Journal of Endocrinology, 211: 263–272. http://dx.doi.org/10.1530/JOE-11-0225 /*ref*/Zarazaga L., Celi I., Guzmán J.L. & Malpaux B. (2012) Reproductive performance is improved during seasonal anoestrus when female and male Murciano-Granadina goats receive melatonin implants and in Payoya goats when females are thus treated. Reproduction in Domestic Animals, 47(3): 436–442. https://doi.org/10.1111/j.1439-0531.2011.01899.x /*ref*/Zhong L., Xiang X., Lu W., Zhau P. & Wang (2013) Interference of xenoestrogen o,p'-DDT on the action of endogenous estrogens at environmentally realistic concentrations. Bulletin of Environmental Contamination and Toxicology, 90: 591–595. https://doi.org/10.1007/s00128-013-0976-9 /*ref*/Zuloaga G.Z., Zuloaga K.L., Hinds L.R., Carbone D.L. & Handa R.J. (2013) Estrogen receptor β expression in the mouse forebrain: Age and sex differences. Journal of Comparative Neurology, 522: 358–371. https://doi.org/10.1002/cne.23400 |
dc.rights.driver.fl_str_mv |
Direitos autorais 2020 Autor e Revista mantêm os direitos da publicação info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Direitos autorais 2020 Autor e Revista mantêm os direitos da publicação |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Unidade Acadêmica de Ciências Exatas e da Natureza/CFP/UFCG |
publisher.none.fl_str_mv |
Unidade Acadêmica de Ciências Exatas e da Natureza/CFP/UFCG |
dc.source.none.fl_str_mv |
Pesquisa e Ensino em Ciências Exatas e da Natureza; v. 4 (2020): Pesquisa e Ensino em Ciências Exatas e da Natureza; 01-14 2526-8236 10.29215/pecen.v4i0 reponame:Pesquisa e Ensino em Ciências Exatas e da Natureza instname:Universidade Federal de Campina Grande (UFCG) instacron:UFCG |
instname_str |
Universidade Federal de Campina Grande (UFCG) |
instacron_str |
UFCG |
institution |
UFCG |
reponame_str |
Pesquisa e Ensino em Ciências Exatas e da Natureza |
collection |
Pesquisa e Ensino em Ciências Exatas e da Natureza |
repository.name.fl_str_mv |
Pesquisa e Ensino em Ciências Exatas e da Natureza - Universidade Federal de Campina Grande (UFCG) |
repository.mail.fl_str_mv |
||cienciasexatasenatureza@gmail.com |
_version_ |
1797688386498068480 |