Teoria e aplicação de support vector machines à aprendizagem e reconhecimento de objetos baseado na aparência.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2002 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFCG |
Texto Completo: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/4265 |
Resumo: | Support Vector Machines (SVM) é uma técnica de aprendizagem de máquina derivada de duas fundamentações sólidas: Teoria da Aprendizagem Estatísta e Otimização Matemática. SVM têm sido recentemente aplicado com sucesso a uma variedade de problemas que vão desde o reconhecimento de caracteres ao reconhecimento de objetos baseado na aparência. Alguns dos motivos para esse sucesso estão relacionados ao fato dessa técnica exibir bom desempenho de generalização em muitas bases de dados reais, é bem fundamentada teóricamente, o processo de treinamento elimina a possibilidade de mínimos locais, existem poucos parâmetros livres para ajustar e a arquitetura não precisa ser encontrada por experimentação. Entretanto, por tratar-se de uma abordagem relativamente nova, livros-texto e artigos estão geralmente disponíveis em uma linguagem que não é facilmente acessível para Cientistas da Computação. Portanto, um dos objetivos desta dissertação é prover uma introdução sobre SVM que apresente os conceitos e teoria essenciais à técnica e que seja mais didática. Estratégias de reconhecimento de objetos com base na aparência se aplicam a problemas em que há dificuldades na obtenção de modelos geométricos dos objetos, desde que as imagens utilizadas não apresentem oclusões. Algumas técnicas de aprendizagem de máquina têm sido aplicadas a este problema, tais como: PCA (Principal Component Analysis), PAC (Probably Approximately Correct) e Redes Neurais, mas nenhuma mostrou-se tão promissora quanto SVM. Dentro desse contexto, esta dissertação objetiva investigar a aplicação de SVM ao reconhecimento de objetos baseado na aparência. Apresenta resultados práticos de classificação utilizando inicialmente uma pequena base de dados e, em seguida, explorando todo o poder da técnica em uma base de dados relativamente grande. Esta dissertação também descreve resultados experimentais usando diferentes variações da técnica e compara o desempenho de reconhecimento de SVM com o desempenho de Redes Neurais do tipo Multilayer Perceptron Backpropagation. |
id |
UFCG_0f27c7bf43bfb18ffe7c33a79ff9877e |
---|---|
oai_identifier_str |
oai:localhost:riufcg/4265 |
network_acronym_str |
UFCG |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFCG |
repository_id_str |
4851 |
spelling |
Teoria e aplicação de support vector machines à aprendizagem e reconhecimento de objetos baseado na aparência.Theory and application of support vector machines to learning and recognition of objects based on appearance.Inteligência ArtificialVisão ComputacionalAprendizagem de MáquinaSupport Vector MachinesArtificial IntelligenceComputer VisionMachine LearningCiência da ComputaçãoSupport Vector Machines (SVM) é uma técnica de aprendizagem de máquina derivada de duas fundamentações sólidas: Teoria da Aprendizagem Estatísta e Otimização Matemática. SVM têm sido recentemente aplicado com sucesso a uma variedade de problemas que vão desde o reconhecimento de caracteres ao reconhecimento de objetos baseado na aparência. Alguns dos motivos para esse sucesso estão relacionados ao fato dessa técnica exibir bom desempenho de generalização em muitas bases de dados reais, é bem fundamentada teóricamente, o processo de treinamento elimina a possibilidade de mínimos locais, existem poucos parâmetros livres para ajustar e a arquitetura não precisa ser encontrada por experimentação. Entretanto, por tratar-se de uma abordagem relativamente nova, livros-texto e artigos estão geralmente disponíveis em uma linguagem que não é facilmente acessível para Cientistas da Computação. Portanto, um dos objetivos desta dissertação é prover uma introdução sobre SVM que apresente os conceitos e teoria essenciais à técnica e que seja mais didática. Estratégias de reconhecimento de objetos com base na aparência se aplicam a problemas em que há dificuldades na obtenção de modelos geométricos dos objetos, desde que as imagens utilizadas não apresentem oclusões. Algumas técnicas de aprendizagem de máquina têm sido aplicadas a este problema, tais como: PCA (Principal Component Analysis), PAC (Probably Approximately Correct) e Redes Neurais, mas nenhuma mostrou-se tão promissora quanto SVM. Dentro desse contexto, esta dissertação objetiva investigar a aplicação de SVM ao reconhecimento de objetos baseado na aparência. Apresenta resultados práticos de classificação utilizando inicialmente uma pequena base de dados e, em seguida, explorando todo o poder da técnica em uma base de dados relativamente grande. Esta dissertação também descreve resultados experimentais usando diferentes variações da técnica e compara o desempenho de reconhecimento de SVM com o desempenho de Redes Neurais do tipo Multilayer Perceptron Backpropagation.Support Vector Machines (SVM) is a machine learning technique derived from two solid backgrounds: Statistical Learning Theory and Mathematical Optimisation. SVM has recently been applied with success to a variety of problems, ranging from character recognition to appearance based object recognition. Some of the reasons for this success are related to the fact this technique exhibits good generalisation performance on many real-life data sets, is well-founded theoreticaly, the training process eliminates the possibility of local minima, there are few free paramets to adjust and the architecture does not have to be found by experimentation. However, since this is a relatively new approach, text books and papers are usually in a language that is not easily acessible to Computer Scientists. Therefore one of the objectives of this dissertation is to provide an introduction to SVM that presents the essential concepts and theory behind the technique and that is more didatic. Appearance-based object recognition strategies appear to be well-suited for the solution of recognition problems in which geometric models of the viewed objects can be difficult to obtain, although they are not naturally tolerant to occlusions. Some machine learning techniques have been applied in this problem like, Principal Component Analysis (PCA), Probably Approximately Correct (PAC) and Neural Networks, but none posed as promising as SVM. Within this context, this dissertation aims to investigate the application of SVM to appearance-based object recognition. It presents practical results of classification initially using a small dataset and then exploring the full power of the technique on a relatively large dataset. It also presents experimental results using different variations of the technique and compares the recognition performance of SVM with the performance of Multilayer Percep tron Backpropagation Neural Networks.Universidade Federal de Campina GrandeBrasilCentro de Engenharia Elétrica e Informática - CEEIPÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃOUFCGGOMES, Herman Martins.GOMES, H. M.http://lattes.cnpq.br/4223020694433271BARROS, Marcelo Alves de.BARROS, M. A.http://lattes.cnpq.br/1101332313551029CARVALHO, João Marques de.CARVALHO, J. M.http://lattes.cnpq.br/1398733763837178SANTOS, Eulanda Miranda dos.2002-06-202019-06-11T18:21:41Z2019-06-112019-06-11T18:21:41Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/4265SANTOS, Eulanda Miranda dos. Teoria e aplicação de support vector machines à aprendizagem e reconhecimento de objetos baseado na aparência. 2002. 121 f. Dissertação (Mestrado em Informática) Programa de Pós-Graduação em Informática, Centro de Ciências e Tecnologia, Universidade Federal da Paraíba, Campina Grande, Paraíba, Brasil, 2002. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/4265porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFCGinstname:Universidade Federal de Campina Grande (UFCG)instacron:UFCG2022-03-21T14:37:50Zoai:localhost:riufcg/4265Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.ufcg.edu.br/PUBhttp://dspace.sti.ufcg.edu.br:8080/oai/requestbdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.bropendoar:48512022-03-21T14:37:50Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG)false |
dc.title.none.fl_str_mv |
Teoria e aplicação de support vector machines à aprendizagem e reconhecimento de objetos baseado na aparência. Theory and application of support vector machines to learning and recognition of objects based on appearance. |
title |
Teoria e aplicação de support vector machines à aprendizagem e reconhecimento de objetos baseado na aparência. |
spellingShingle |
Teoria e aplicação de support vector machines à aprendizagem e reconhecimento de objetos baseado na aparência. SANTOS, Eulanda Miranda dos. Inteligência Artificial Visão Computacional Aprendizagem de Máquina Support Vector Machines Artificial Intelligence Computer Vision Machine Learning Ciência da Computação |
title_short |
Teoria e aplicação de support vector machines à aprendizagem e reconhecimento de objetos baseado na aparência. |
title_full |
Teoria e aplicação de support vector machines à aprendizagem e reconhecimento de objetos baseado na aparência. |
title_fullStr |
Teoria e aplicação de support vector machines à aprendizagem e reconhecimento de objetos baseado na aparência. |
title_full_unstemmed |
Teoria e aplicação de support vector machines à aprendizagem e reconhecimento de objetos baseado na aparência. |
title_sort |
Teoria e aplicação de support vector machines à aprendizagem e reconhecimento de objetos baseado na aparência. |
author |
SANTOS, Eulanda Miranda dos. |
author_facet |
SANTOS, Eulanda Miranda dos. |
author_role |
author |
dc.contributor.none.fl_str_mv |
GOMES, Herman Martins. GOMES, H. M. http://lattes.cnpq.br/4223020694433271 BARROS, Marcelo Alves de. BARROS, M. A. http://lattes.cnpq.br/1101332313551029 CARVALHO, João Marques de. CARVALHO, J. M. http://lattes.cnpq.br/1398733763837178 |
dc.contributor.author.fl_str_mv |
SANTOS, Eulanda Miranda dos. |
dc.subject.por.fl_str_mv |
Inteligência Artificial Visão Computacional Aprendizagem de Máquina Support Vector Machines Artificial Intelligence Computer Vision Machine Learning Ciência da Computação |
topic |
Inteligência Artificial Visão Computacional Aprendizagem de Máquina Support Vector Machines Artificial Intelligence Computer Vision Machine Learning Ciência da Computação |
description |
Support Vector Machines (SVM) é uma técnica de aprendizagem de máquina derivada de duas fundamentações sólidas: Teoria da Aprendizagem Estatísta e Otimização Matemática. SVM têm sido recentemente aplicado com sucesso a uma variedade de problemas que vão desde o reconhecimento de caracteres ao reconhecimento de objetos baseado na aparência. Alguns dos motivos para esse sucesso estão relacionados ao fato dessa técnica exibir bom desempenho de generalização em muitas bases de dados reais, é bem fundamentada teóricamente, o processo de treinamento elimina a possibilidade de mínimos locais, existem poucos parâmetros livres para ajustar e a arquitetura não precisa ser encontrada por experimentação. Entretanto, por tratar-se de uma abordagem relativamente nova, livros-texto e artigos estão geralmente disponíveis em uma linguagem que não é facilmente acessível para Cientistas da Computação. Portanto, um dos objetivos desta dissertação é prover uma introdução sobre SVM que apresente os conceitos e teoria essenciais à técnica e que seja mais didática. Estratégias de reconhecimento de objetos com base na aparência se aplicam a problemas em que há dificuldades na obtenção de modelos geométricos dos objetos, desde que as imagens utilizadas não apresentem oclusões. Algumas técnicas de aprendizagem de máquina têm sido aplicadas a este problema, tais como: PCA (Principal Component Analysis), PAC (Probably Approximately Correct) e Redes Neurais, mas nenhuma mostrou-se tão promissora quanto SVM. Dentro desse contexto, esta dissertação objetiva investigar a aplicação de SVM ao reconhecimento de objetos baseado na aparência. Apresenta resultados práticos de classificação utilizando inicialmente uma pequena base de dados e, em seguida, explorando todo o poder da técnica em uma base de dados relativamente grande. Esta dissertação também descreve resultados experimentais usando diferentes variações da técnica e compara o desempenho de reconhecimento de SVM com o desempenho de Redes Neurais do tipo Multilayer Perceptron Backpropagation. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-06-20 2019-06-11T18:21:41Z 2019-06-11 2019-06-11T18:21:41Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/4265 SANTOS, Eulanda Miranda dos. Teoria e aplicação de support vector machines à aprendizagem e reconhecimento de objetos baseado na aparência. 2002. 121 f. Dissertação (Mestrado em Informática) Programa de Pós-Graduação em Informática, Centro de Ciências e Tecnologia, Universidade Federal da Paraíba, Campina Grande, Paraíba, Brasil, 2002. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/4265 |
url |
http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/4265 |
identifier_str_mv |
SANTOS, Eulanda Miranda dos. Teoria e aplicação de support vector machines à aprendizagem e reconhecimento de objetos baseado na aparência. 2002. 121 f. Dissertação (Mestrado em Informática) Programa de Pós-Graduação em Informática, Centro de Ciências e Tecnologia, Universidade Federal da Paraíba, Campina Grande, Paraíba, Brasil, 2002. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/4265 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Campina Grande Brasil Centro de Engenharia Elétrica e Informática - CEEI PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO UFCG |
publisher.none.fl_str_mv |
Universidade Federal de Campina Grande Brasil Centro de Engenharia Elétrica e Informática - CEEI PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO UFCG |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFCG instname:Universidade Federal de Campina Grande (UFCG) instacron:UFCG |
instname_str |
Universidade Federal de Campina Grande (UFCG) |
instacron_str |
UFCG |
institution |
UFCG |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFCG |
collection |
Biblioteca Digital de Teses e Dissertações da UFCG |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG) |
repository.mail.fl_str_mv |
bdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.br |
_version_ |
1809744376667045888 |