Recomendação de projetos do Github por meio de Algoritmos de Learning to Rank
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFCG |
Texto Completo: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/19198 |
Resumo: | O GitHub, atualmente a maior plataforma para hospedagem de código e controle de versionamento, possui um enorme fluxo diário de interações entre usuários e repositórios. Com o número de repositórios hospedados na casa dos milhões, alguns projetos que poderiam ser do interesse de alguns usuários acabam passando despercebidos, assim como projetos que necessitam de desenvolvedores, acabam ficando no ostracismo. Para esses casos, surge a necessidade de algum mecanismo que possa facilitar a escolha de projetos, pelo usuário. Na literatura outros trabalhos, já realizaram estudos sobre esse contexto, recomendando projetos com diferentes abordagens. Entretanto, ainda há espaço para novos estudos, utilizando novos aspectos, na tentativa de verificar e validar outros resultados. Por isso, esse trabalho busca encontrar projetos relevantes para o usuário, baseando-se nos interesses do mesmo, na plataforma GitHub, utilizando um conjunto de features com o auxílio de algoritmos de learning to rank. Analisamos a efetividade learning to rank, no contexto de recomendação de projetos, utilizando os algoritmos RankNet, AdaRank e ListNet, usando como espaço amostral 826 repositórios e 3464 usuários do GitHub. Os resultados mostram, a relevância da variável resposta e que a abordagem de learning to rank para recomendação de projetos oferece muito espaço para exploração. |
id |
UFCG_2898aee5c506aaae1839a220cfd3279d |
---|---|
oai_identifier_str |
oai:localhost:riufcg/19198 |
network_acronym_str |
UFCG |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFCG |
repository_id_str |
4851 |
spelling |
Recomendação de projetos do Github por meio de Algoritmos de Learning to RankGithub project recommendation through Learning to Rank AlgorithmsPlataforma GitHubLearning to RankAlgoritmos de Learning to RankRankLibRankNetGitHub PlatformLearning to rankLearning to Rank AlgorithmsCiência da Computação.O GitHub, atualmente a maior plataforma para hospedagem de código e controle de versionamento, possui um enorme fluxo diário de interações entre usuários e repositórios. Com o número de repositórios hospedados na casa dos milhões, alguns projetos que poderiam ser do interesse de alguns usuários acabam passando despercebidos, assim como projetos que necessitam de desenvolvedores, acabam ficando no ostracismo. Para esses casos, surge a necessidade de algum mecanismo que possa facilitar a escolha de projetos, pelo usuário. Na literatura outros trabalhos, já realizaram estudos sobre esse contexto, recomendando projetos com diferentes abordagens. Entretanto, ainda há espaço para novos estudos, utilizando novos aspectos, na tentativa de verificar e validar outros resultados. Por isso, esse trabalho busca encontrar projetos relevantes para o usuário, baseando-se nos interesses do mesmo, na plataforma GitHub, utilizando um conjunto de features com o auxílio de algoritmos de learning to rank. Analisamos a efetividade learning to rank, no contexto de recomendação de projetos, utilizando os algoritmos RankNet, AdaRank e ListNet, usando como espaço amostral 826 repositórios e 3464 usuários do GitHub. Os resultados mostram, a relevância da variável resposta e que a abordagem de learning to rank para recomendação de projetos oferece muito espaço para exploração.GitHub, as currently the biggest platform for hosting software development and version control, handles on a daily basis, a massive stream of interactions between users and repositories. With millions of repositories hosted on the platform, some projects that could be interesting for some users ended up being unnoticed, same as other projects which are searching for developers ended up staying on a limbo. In these situations, it becomes obvious the need for some mechanism that could help the user on choosing projects. In the literature, there are other studies on the same context, recommending projects using different approaches. Although, still there is space for new studies, using new aspects, in an attempt to verify and validate other results. Therefore, this study focuses on finding relevant projects for the users based on their interest, on the GitHub, using a set of features with the learning to rank algorithms support. Analysing the effectiveness of learning to rank, on the recommending projects context, using the algorithms RankNet, AdaRank and ListNet, in the sample space of 826 repositories and 3464 users on GitHub. The results present the target variable's relevancy and there is still much space for exploration on learning to rank approach for projects recommendation.Universidade Federal de Campina GrandeBrasilCentro de Engenharia Elétrica e Informática - CEEIUFCGRAMALHO, Franklin de Souza.RAMALHO, F. S.http://lattes.cnpq.br/2469816352786812OLIVEIRA, Maxwell Guimarães de.OLIVEIRA, M. G.MASSONI, Tiago Lima.MASSONI, T. L.FARIAS, Ariann Michael Martins de Andrade.20212021-06-02T21:24:19Z2021-06-022021-06-02T21:24:19Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesishttp://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/19198FARIAS, Ariann Michael Martins de Andrade. Recomendação de projetos do Github por meio Algoritmos de Learning to Rank. 2021. 13f. (Trabalho de Conclusão de Curso - Artigo), Curso de Bacharelado em Ciência da Computação, Centro de Engenharia Elétrica e Informática , Universidade Federal de Campina Grande – Paraíba - Brasil, 2021. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/19198porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFCGinstname:Universidade Federal de Campina Grande (UFCG)instacron:UFCG2021-09-06T19:32:22Zoai:localhost:riufcg/19198Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.ufcg.edu.br/PUBhttp://dspace.sti.ufcg.edu.br:8080/oai/requestbdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.bropendoar:48512021-09-06T19:32:22Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG)false |
dc.title.none.fl_str_mv |
Recomendação de projetos do Github por meio de Algoritmos de Learning to Rank Github project recommendation through Learning to Rank Algorithms |
title |
Recomendação de projetos do Github por meio de Algoritmos de Learning to Rank |
spellingShingle |
Recomendação de projetos do Github por meio de Algoritmos de Learning to Rank FARIAS, Ariann Michael Martins de Andrade. Plataforma GitHub Learning to Rank Algoritmos de Learning to Rank RankLib RankNet GitHub Platform Learning to rank Learning to Rank Algorithms Ciência da Computação. |
title_short |
Recomendação de projetos do Github por meio de Algoritmos de Learning to Rank |
title_full |
Recomendação de projetos do Github por meio de Algoritmos de Learning to Rank |
title_fullStr |
Recomendação de projetos do Github por meio de Algoritmos de Learning to Rank |
title_full_unstemmed |
Recomendação de projetos do Github por meio de Algoritmos de Learning to Rank |
title_sort |
Recomendação de projetos do Github por meio de Algoritmos de Learning to Rank |
author |
FARIAS, Ariann Michael Martins de Andrade. |
author_facet |
FARIAS, Ariann Michael Martins de Andrade. |
author_role |
author |
dc.contributor.none.fl_str_mv |
RAMALHO, Franklin de Souza. RAMALHO, F. S. http://lattes.cnpq.br/2469816352786812 OLIVEIRA, Maxwell Guimarães de. OLIVEIRA, M. G. MASSONI, Tiago Lima. MASSONI, T. L. |
dc.contributor.author.fl_str_mv |
FARIAS, Ariann Michael Martins de Andrade. |
dc.subject.por.fl_str_mv |
Plataforma GitHub Learning to Rank Algoritmos de Learning to Rank RankLib RankNet GitHub Platform Learning to rank Learning to Rank Algorithms Ciência da Computação. |
topic |
Plataforma GitHub Learning to Rank Algoritmos de Learning to Rank RankLib RankNet GitHub Platform Learning to rank Learning to Rank Algorithms Ciência da Computação. |
description |
O GitHub, atualmente a maior plataforma para hospedagem de código e controle de versionamento, possui um enorme fluxo diário de interações entre usuários e repositórios. Com o número de repositórios hospedados na casa dos milhões, alguns projetos que poderiam ser do interesse de alguns usuários acabam passando despercebidos, assim como projetos que necessitam de desenvolvedores, acabam ficando no ostracismo. Para esses casos, surge a necessidade de algum mecanismo que possa facilitar a escolha de projetos, pelo usuário. Na literatura outros trabalhos, já realizaram estudos sobre esse contexto, recomendando projetos com diferentes abordagens. Entretanto, ainda há espaço para novos estudos, utilizando novos aspectos, na tentativa de verificar e validar outros resultados. Por isso, esse trabalho busca encontrar projetos relevantes para o usuário, baseando-se nos interesses do mesmo, na plataforma GitHub, utilizando um conjunto de features com o auxílio de algoritmos de learning to rank. Analisamos a efetividade learning to rank, no contexto de recomendação de projetos, utilizando os algoritmos RankNet, AdaRank e ListNet, usando como espaço amostral 826 repositórios e 3464 usuários do GitHub. Os resultados mostram, a relevância da variável resposta e que a abordagem de learning to rank para recomendação de projetos oferece muito espaço para exploração. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2021-06-02T21:24:19Z 2021-06-02 2021-06-02T21:24:19Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/19198 FARIAS, Ariann Michael Martins de Andrade. Recomendação de projetos do Github por meio Algoritmos de Learning to Rank. 2021. 13f. (Trabalho de Conclusão de Curso - Artigo), Curso de Bacharelado em Ciência da Computação, Centro de Engenharia Elétrica e Informática , Universidade Federal de Campina Grande – Paraíba - Brasil, 2021. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/19198 |
url |
http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/19198 |
identifier_str_mv |
FARIAS, Ariann Michael Martins de Andrade. Recomendação de projetos do Github por meio Algoritmos de Learning to Rank. 2021. 13f. (Trabalho de Conclusão de Curso - Artigo), Curso de Bacharelado em Ciência da Computação, Centro de Engenharia Elétrica e Informática , Universidade Federal de Campina Grande – Paraíba - Brasil, 2021. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/19198 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Campina Grande Brasil Centro de Engenharia Elétrica e Informática - CEEI UFCG |
publisher.none.fl_str_mv |
Universidade Federal de Campina Grande Brasil Centro de Engenharia Elétrica e Informática - CEEI UFCG |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFCG instname:Universidade Federal de Campina Grande (UFCG) instacron:UFCG |
instname_str |
Universidade Federal de Campina Grande (UFCG) |
instacron_str |
UFCG |
institution |
UFCG |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFCG |
collection |
Biblioteca Digital de Teses e Dissertações da UFCG |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG) |
repository.mail.fl_str_mv |
bdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.br |
_version_ |
1809744494051983360 |