Estimativa de desembolso mensal em obras de terraplanagem com uso de rede neural artificial.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFCG |
Texto Completo: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/23730 |
Resumo: | O objetivo desse trabalho é desenvolver, aplicar e analisar os resultados de uma rede neural artificial (RNA) desenvolvida utilizando um software de simulação de matrizes com pacote para redes neurais artificiais, que seja capaz de realizar uma estimativa de custo mensal em uma obra de terraplenagem nos serviços de corte e aterro. O princípio consiste em entender a importância de cada parâmetro de entrada e saída; organizar todos os dados coletados e normalizar esses dados para que variem dentro do intervalo de 0 a 1. Foram estudadas várias arquiteturas, variando número de camadas, neurônios e função de ativação, com menor percentual de erro, para verificar a capacidade de previsão do volume de corte e aterro a ser utilizado no mês subsequente e, com isso, chegar ao valor de desembolso mensal a partir do valor pago por metro cúbico escavado ou compactado. Dessarte, foi escolhida uma obra de condomínio horizontal de padrão médio a alto composta por projetos e orçamentos, além de outros dados necessários para os parâmetros de entrada. Os parâmetros de entrada escolhidos foram localização da estaca, distância do ponto à estaca zero daquela localização, volume de corte de projeto, volume de aterro de projeto, mês de execução e inclinação. Enquanto isso, os parâmetros de saída foram volume de corte e aterro executado. Os resultados das RNA’s foram comparados aos valores reais de duas formas: na primeira, os volumes de corte e aterro previstos foram comparados de estaca a estaca, já na segunda, os volumes de corte e aterro previstos foram comparados por mês e por rua, não mais por estaca. A arquitetura com melhor desempenho foi a RNA1, constituída de 02 (duas) camadas, 10 (dez) neurônios e função de ativação Tansig-tansig. Outra rede neural mostrou resultados parecidos aos da RNA1, porém, com 03 (três) camadas e 15 (quinze) neurônios e, portanto, necessitando de maior esforço da máquina para chegar ao mesmo resultado médio. Os valores de erros médios maiores que o intervalo admitido encontrados no volume de aterro podem ser explicados pela pouca quantidade de obras, para analisar e comparar, bem como a pouca quantidade de parâmetros de entrada disponíveis. |
id |
UFCG_2933393851f2cd956bab60892d7dffa7 |
---|---|
oai_identifier_str |
oai:localhost:riufcg/23730 |
network_acronym_str |
UFCG |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFCG |
repository_id_str |
4851 |
spelling |
Estimativa de desembolso mensal em obras de terraplanagem com uso de rede neural artificial.Estimate of monthly disbursement in earthworks using artificial neural network.Movimentação de terraTerraplanagemInteligência artificialOrçamento de obrasConstrução CivilRedes neurais artificiaisGestão de terraplanagemDesenvolvimento de redes neurais artificiaisEarthworksLandscapingArtificial intelligenceWorks budgetConstructionArtificial neural networkEarthworks managementDevelopment of artificial neural networksEngenharia CivilO objetivo desse trabalho é desenvolver, aplicar e analisar os resultados de uma rede neural artificial (RNA) desenvolvida utilizando um software de simulação de matrizes com pacote para redes neurais artificiais, que seja capaz de realizar uma estimativa de custo mensal em uma obra de terraplenagem nos serviços de corte e aterro. O princípio consiste em entender a importância de cada parâmetro de entrada e saída; organizar todos os dados coletados e normalizar esses dados para que variem dentro do intervalo de 0 a 1. Foram estudadas várias arquiteturas, variando número de camadas, neurônios e função de ativação, com menor percentual de erro, para verificar a capacidade de previsão do volume de corte e aterro a ser utilizado no mês subsequente e, com isso, chegar ao valor de desembolso mensal a partir do valor pago por metro cúbico escavado ou compactado. Dessarte, foi escolhida uma obra de condomínio horizontal de padrão médio a alto composta por projetos e orçamentos, além de outros dados necessários para os parâmetros de entrada. Os parâmetros de entrada escolhidos foram localização da estaca, distância do ponto à estaca zero daquela localização, volume de corte de projeto, volume de aterro de projeto, mês de execução e inclinação. Enquanto isso, os parâmetros de saída foram volume de corte e aterro executado. Os resultados das RNA’s foram comparados aos valores reais de duas formas: na primeira, os volumes de corte e aterro previstos foram comparados de estaca a estaca, já na segunda, os volumes de corte e aterro previstos foram comparados por mês e por rua, não mais por estaca. A arquitetura com melhor desempenho foi a RNA1, constituída de 02 (duas) camadas, 10 (dez) neurônios e função de ativação Tansig-tansig. Outra rede neural mostrou resultados parecidos aos da RNA1, porém, com 03 (três) camadas e 15 (quinze) neurônios e, portanto, necessitando de maior esforço da máquina para chegar ao mesmo resultado médio. Os valores de erros médios maiores que o intervalo admitido encontrados no volume de aterro podem ser explicados pela pouca quantidade de obras, para analisar e comparar, bem como a pouca quantidade de parâmetros de entrada disponíveis.The objective of this work is to develop, apply and analyze the results of an artificial neural network (ANN) developed using a matrix simulation software with a package for artificial neural networks, which is capable of performing a monthly cost estimate in an earthworks work. in cut and fill services. The principle is to understand the importance of each input and output parameter; organize all collected data and normalize these data so that they vary within the range of 0 to 1. Several architectures were studied, varying the number of layers, neurons and activation function, with a lower percentage of error, to verify the volume prediction capacity of cut and fill one to be used in the following month and, with this, reach the monthly disbursement value from the amount paid per cubic meter excavated or compacted. Thus, a medium to high standard horizontal condominium project was chosen, consisting of projects and budgets, in addition to other data provided for the input parameters. The chosen input parameters were stake location, distance from point to stake zero location, design cut volume, design backfill volume, month of execution, and large. Meanwhile, the output parameters were cut volume and landfill conducted. The results of the ANNs were compared to the actual values in two ways: in the first, the cut volumes and predicted landfill were compared from pile to pile, in the second, the compared volume was separated into months and by street, no longer by pile. The best performing architecture for RNA1, discovery of 02 (two) layers, 10 (ten) neurons and Tansig activation function. Another neural network showed results similar to those of RNA1, however, with 03 (three) layers and 15 (fifteen) neurons and, therefore, requiring a greater effort from the machine to reach the same average result. The average error values greater than the admitted range found in the landfill volume can be explained by the small amount of works to analyze and compare, as well as the small amount of input parameters available.Universidade Federal de Campina GrandeBrasilCentro de Tecnologia e Recursos Naturais - CTRNUFCGBEZERRA, Izabelle Marie Trindade.BEZERRA, I. M. T.http://lattes.cnpq.br/2003009506775932QUEIROZ JÚNIOR, Hélio da Silva.QUEIROZ JÚNIOR, H. S.http://lattes.cnpq.br/1612814908242211CHAGAS, Rodrigo Mendes Patrício.SANTA CRUZ, Walter.SILVA, Bruno Sousa da.20212022-02-24T18:48:05Z2022-02-242022-02-24T18:48:05Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesishttp://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/23730SILVA, Bruno Sousa da. Estimativa de desembolso mensal em obras de terraplanagem com uso de rede neural artificial. 2021. 50f. Trabalho de Conclusão de Curso (Monografia), Curso de Bacharelado em Engenharia Civil, Centro de Tecnologia e Recursos Naturais, Universidade Federal de Campina Grande - Campina Grande - Paraíba - Brasil, 2021. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/23730porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFCGinstname:Universidade Federal de Campina Grande (UFCG)instacron:UFCG2022-02-25T12:15:52Zoai:localhost:riufcg/23730Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.ufcg.edu.br/PUBhttp://dspace.sti.ufcg.edu.br:8080/oai/requestbdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.bropendoar:48512022-02-25T12:15:52Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG)false |
dc.title.none.fl_str_mv |
Estimativa de desembolso mensal em obras de terraplanagem com uso de rede neural artificial. Estimate of monthly disbursement in earthworks using artificial neural network. |
title |
Estimativa de desembolso mensal em obras de terraplanagem com uso de rede neural artificial. |
spellingShingle |
Estimativa de desembolso mensal em obras de terraplanagem com uso de rede neural artificial. SILVA, Bruno Sousa da. Movimentação de terra Terraplanagem Inteligência artificial Orçamento de obras Construção Civil Redes neurais artificiais Gestão de terraplanagem Desenvolvimento de redes neurais artificiais Earthworks Landscaping Artificial intelligence Works budget Construction Artificial neural network Earthworks management Development of artificial neural networks Engenharia Civil |
title_short |
Estimativa de desembolso mensal em obras de terraplanagem com uso de rede neural artificial. |
title_full |
Estimativa de desembolso mensal em obras de terraplanagem com uso de rede neural artificial. |
title_fullStr |
Estimativa de desembolso mensal em obras de terraplanagem com uso de rede neural artificial. |
title_full_unstemmed |
Estimativa de desembolso mensal em obras de terraplanagem com uso de rede neural artificial. |
title_sort |
Estimativa de desembolso mensal em obras de terraplanagem com uso de rede neural artificial. |
author |
SILVA, Bruno Sousa da. |
author_facet |
SILVA, Bruno Sousa da. |
author_role |
author |
dc.contributor.none.fl_str_mv |
BEZERRA, Izabelle Marie Trindade. BEZERRA, I. M. T. http://lattes.cnpq.br/2003009506775932 QUEIROZ JÚNIOR, Hélio da Silva. QUEIROZ JÚNIOR, H. S. http://lattes.cnpq.br/1612814908242211 CHAGAS, Rodrigo Mendes Patrício. SANTA CRUZ, Walter. |
dc.contributor.author.fl_str_mv |
SILVA, Bruno Sousa da. |
dc.subject.por.fl_str_mv |
Movimentação de terra Terraplanagem Inteligência artificial Orçamento de obras Construção Civil Redes neurais artificiais Gestão de terraplanagem Desenvolvimento de redes neurais artificiais Earthworks Landscaping Artificial intelligence Works budget Construction Artificial neural network Earthworks management Development of artificial neural networks Engenharia Civil |
topic |
Movimentação de terra Terraplanagem Inteligência artificial Orçamento de obras Construção Civil Redes neurais artificiais Gestão de terraplanagem Desenvolvimento de redes neurais artificiais Earthworks Landscaping Artificial intelligence Works budget Construction Artificial neural network Earthworks management Development of artificial neural networks Engenharia Civil |
description |
O objetivo desse trabalho é desenvolver, aplicar e analisar os resultados de uma rede neural artificial (RNA) desenvolvida utilizando um software de simulação de matrizes com pacote para redes neurais artificiais, que seja capaz de realizar uma estimativa de custo mensal em uma obra de terraplenagem nos serviços de corte e aterro. O princípio consiste em entender a importância de cada parâmetro de entrada e saída; organizar todos os dados coletados e normalizar esses dados para que variem dentro do intervalo de 0 a 1. Foram estudadas várias arquiteturas, variando número de camadas, neurônios e função de ativação, com menor percentual de erro, para verificar a capacidade de previsão do volume de corte e aterro a ser utilizado no mês subsequente e, com isso, chegar ao valor de desembolso mensal a partir do valor pago por metro cúbico escavado ou compactado. Dessarte, foi escolhida uma obra de condomínio horizontal de padrão médio a alto composta por projetos e orçamentos, além de outros dados necessários para os parâmetros de entrada. Os parâmetros de entrada escolhidos foram localização da estaca, distância do ponto à estaca zero daquela localização, volume de corte de projeto, volume de aterro de projeto, mês de execução e inclinação. Enquanto isso, os parâmetros de saída foram volume de corte e aterro executado. Os resultados das RNA’s foram comparados aos valores reais de duas formas: na primeira, os volumes de corte e aterro previstos foram comparados de estaca a estaca, já na segunda, os volumes de corte e aterro previstos foram comparados por mês e por rua, não mais por estaca. A arquitetura com melhor desempenho foi a RNA1, constituída de 02 (duas) camadas, 10 (dez) neurônios e função de ativação Tansig-tansig. Outra rede neural mostrou resultados parecidos aos da RNA1, porém, com 03 (três) camadas e 15 (quinze) neurônios e, portanto, necessitando de maior esforço da máquina para chegar ao mesmo resultado médio. Os valores de erros médios maiores que o intervalo admitido encontrados no volume de aterro podem ser explicados pela pouca quantidade de obras, para analisar e comparar, bem como a pouca quantidade de parâmetros de entrada disponíveis. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2022-02-24T18:48:05Z 2022-02-24 2022-02-24T18:48:05Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/23730 SILVA, Bruno Sousa da. Estimativa de desembolso mensal em obras de terraplanagem com uso de rede neural artificial. 2021. 50f. Trabalho de Conclusão de Curso (Monografia), Curso de Bacharelado em Engenharia Civil, Centro de Tecnologia e Recursos Naturais, Universidade Federal de Campina Grande - Campina Grande - Paraíba - Brasil, 2021. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/23730 |
url |
http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/23730 |
identifier_str_mv |
SILVA, Bruno Sousa da. Estimativa de desembolso mensal em obras de terraplanagem com uso de rede neural artificial. 2021. 50f. Trabalho de Conclusão de Curso (Monografia), Curso de Bacharelado em Engenharia Civil, Centro de Tecnologia e Recursos Naturais, Universidade Federal de Campina Grande - Campina Grande - Paraíba - Brasil, 2021. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/23730 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Campina Grande Brasil Centro de Tecnologia e Recursos Naturais - CTRN UFCG |
publisher.none.fl_str_mv |
Universidade Federal de Campina Grande Brasil Centro de Tecnologia e Recursos Naturais - CTRN UFCG |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFCG instname:Universidade Federal de Campina Grande (UFCG) instacron:UFCG |
instname_str |
Universidade Federal de Campina Grande (UFCG) |
instacron_str |
UFCG |
institution |
UFCG |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFCG |
collection |
Biblioteca Digital de Teses e Dissertações da UFCG |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG) |
repository.mail.fl_str_mv |
bdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.br |
_version_ |
1809744527337979904 |