Agrupamento de faces em vídeos digitais.

Detalhes bibliográficos
Autor(a) principal: MOURA, Eduardo Santiago.
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFCG
Texto Completo: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/894
Resumo: Faces humanas são algumas das entidades mais importantes frequentemente encontradas em vídeos. Devido ao substancial volume de produção e consumo de vídeos digitais na atualidade (tanto vídeos pessoais quanto provenientes das indústrias de comunicação e entretenimento), a extração automática de informações relevantes de tais vídeos se tornou um tema ativo de pesquisa. Parte dos esforços realizados nesta área tem se concentrado no uso do reconhecimento e agrupamento facial para auxiliar o processo de anotação automática de faces em vídeos. No entanto, algoritmos de agrupamento de faces atuais ainda não são robustos às variações de aparência de uma mesma face em situações de aquisição típicas. Neste contexto, o problema abordado nesta tese é o agrupamento de faces em vídeos digitais, com a proposição de nova abordagem com desempenho superior (em termos de qualidade do agrupamento e custo computacional) em relação ao estado-da-arte, utilizando bases de vídeos de referência da literatura. Com fundamentação em uma revisão bibliográfica sistemática e em avaliações experimentais, chegou-se à proposição da abordagem, a qual é constituída por módulos de pré-processamento, detecção de faces, rastreamento, extração de características, agrupamento, análise de similaridade temporal e reagrupamento espacial. A abordagem de agrupamento de faces proposta alcançou os objetivos planejados obtendo resultados superiores (no tocante a diferentes métricas) a métodos avaliados utilizando as bases de vídeos YouTube Celebrities (KIM et al., 2008) e SAIVT-Bnews (GHAEMMAGHAMI, DEAN e SRIDHARAN, 2013).
id UFCG_2cc834a7f835d20c89f99db7ff578aca
oai_identifier_str oai:localhost:riufcg/894
network_acronym_str UFCG
network_name_str Biblioteca Digital de Teses e Dissertações da UFCG
repository_id_str 4851
spelling Agrupamento de faces em vídeos digitais.Agrupamento de Faces em VídeosAgrupamento Aglomerativo HierárquicoAvaliação de AgrupamentoVideo Face ClusteringHierarchical Agglomerative ClusteringClustering EvaluationCiênciasCiência da ComputaçãoFaces humanas são algumas das entidades mais importantes frequentemente encontradas em vídeos. Devido ao substancial volume de produção e consumo de vídeos digitais na atualidade (tanto vídeos pessoais quanto provenientes das indústrias de comunicação e entretenimento), a extração automática de informações relevantes de tais vídeos se tornou um tema ativo de pesquisa. Parte dos esforços realizados nesta área tem se concentrado no uso do reconhecimento e agrupamento facial para auxiliar o processo de anotação automática de faces em vídeos. No entanto, algoritmos de agrupamento de faces atuais ainda não são robustos às variações de aparência de uma mesma face em situações de aquisição típicas. Neste contexto, o problema abordado nesta tese é o agrupamento de faces em vídeos digitais, com a proposição de nova abordagem com desempenho superior (em termos de qualidade do agrupamento e custo computacional) em relação ao estado-da-arte, utilizando bases de vídeos de referência da literatura. Com fundamentação em uma revisão bibliográfica sistemática e em avaliações experimentais, chegou-se à proposição da abordagem, a qual é constituída por módulos de pré-processamento, detecção de faces, rastreamento, extração de características, agrupamento, análise de similaridade temporal e reagrupamento espacial. A abordagem de agrupamento de faces proposta alcançou os objetivos planejados obtendo resultados superiores (no tocante a diferentes métricas) a métodos avaliados utilizando as bases de vídeos YouTube Celebrities (KIM et al., 2008) e SAIVT-Bnews (GHAEMMAGHAMI, DEAN e SRIDHARAN, 2013).Human faces are some of the most important entities frequently encountered in videos. As a result of the currently high volumes of digital videos production and consumption both personal and profissional videos, automatic extraction of relevant information from those videos has become an active research topic. Many efforts in this area have focused on the use of face clustering and recognition in order to aid with the process of annotating faces in videos. However, current face clustering algorithms are not robust to variations of appearance that a same face may suffer due to typical changes in acquisition scenarios. Hence, this thesis proposes a novel approach to the problem of face clustering in digital videos which achieves superior performance (in terms of clustering quality and computational cost) in comparison to the state-of-the-art, using reference video databases according to the literature. After performing a systematic literature review and experimental evaluations, the current approach has been proposed, which has the following modules: preprocessing, face detection, tracking, feature extraction, clustering, temporal similarity analysis, and spatial reclustering. The proposed approach for face clustering achieved the planned objectives obtaining better results (according to different metrics) than those presented by methods evaluated on the YouTube Celebrities videos dataset (KIM et al., 2008) and SAIVT-Bnews videos dataset (GHAEMMAGHAMI, DEAN e SRIDHARAN, 2013).Universidade Federal de Campina GrandeBrasilCentro de Engenharia Elétrica e Informática - CEEIPÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃOUFCGGOMES, Herman Martins.GOMES, H. M.http://lattes.cnpq.br/4223020694433271CARVALHO, João Marques de.CARVALHO, J. M.http://lattes.cnpq.br/1398733763837178MOURA, Eduardo Santiago.20162018-06-06T11:40:34Z2018-06-062018-06-06T11:40:34Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttp://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/894MOURA, E. S. Agrupamento de faces em vídeos digitais. 2016. 129 f. Tese (Doutorado em Ciência da Computação) – Programa de Pós-Graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande, Paraíba, Brasil, 2016. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/894porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFCGinstname:Universidade Federal de Campina Grande (UFCG)instacron:UFCG2022-03-15T11:42:05Zoai:localhost:riufcg/894Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.ufcg.edu.br/PUBhttp://dspace.sti.ufcg.edu.br:8080/oai/requestbdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.bropendoar:48512022-03-15T11:42:05Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG)false
dc.title.none.fl_str_mv Agrupamento de faces em vídeos digitais.
title Agrupamento de faces em vídeos digitais.
spellingShingle Agrupamento de faces em vídeos digitais.
MOURA, Eduardo Santiago.
Agrupamento de Faces em Vídeos
Agrupamento Aglomerativo Hierárquico
Avaliação de Agrupamento
Video Face Clustering
Hierarchical Agglomerative Clustering
Clustering Evaluation
Ciências
Ciência da Computação
title_short Agrupamento de faces em vídeos digitais.
title_full Agrupamento de faces em vídeos digitais.
title_fullStr Agrupamento de faces em vídeos digitais.
title_full_unstemmed Agrupamento de faces em vídeos digitais.
title_sort Agrupamento de faces em vídeos digitais.
author MOURA, Eduardo Santiago.
author_facet MOURA, Eduardo Santiago.
author_role author
dc.contributor.none.fl_str_mv GOMES, Herman Martins.
GOMES, H. M.
http://lattes.cnpq.br/4223020694433271
CARVALHO, João Marques de.
CARVALHO, J. M.
http://lattes.cnpq.br/1398733763837178
dc.contributor.author.fl_str_mv MOURA, Eduardo Santiago.
dc.subject.por.fl_str_mv Agrupamento de Faces em Vídeos
Agrupamento Aglomerativo Hierárquico
Avaliação de Agrupamento
Video Face Clustering
Hierarchical Agglomerative Clustering
Clustering Evaluation
Ciências
Ciência da Computação
topic Agrupamento de Faces em Vídeos
Agrupamento Aglomerativo Hierárquico
Avaliação de Agrupamento
Video Face Clustering
Hierarchical Agglomerative Clustering
Clustering Evaluation
Ciências
Ciência da Computação
description Faces humanas são algumas das entidades mais importantes frequentemente encontradas em vídeos. Devido ao substancial volume de produção e consumo de vídeos digitais na atualidade (tanto vídeos pessoais quanto provenientes das indústrias de comunicação e entretenimento), a extração automática de informações relevantes de tais vídeos se tornou um tema ativo de pesquisa. Parte dos esforços realizados nesta área tem se concentrado no uso do reconhecimento e agrupamento facial para auxiliar o processo de anotação automática de faces em vídeos. No entanto, algoritmos de agrupamento de faces atuais ainda não são robustos às variações de aparência de uma mesma face em situações de aquisição típicas. Neste contexto, o problema abordado nesta tese é o agrupamento de faces em vídeos digitais, com a proposição de nova abordagem com desempenho superior (em termos de qualidade do agrupamento e custo computacional) em relação ao estado-da-arte, utilizando bases de vídeos de referência da literatura. Com fundamentação em uma revisão bibliográfica sistemática e em avaliações experimentais, chegou-se à proposição da abordagem, a qual é constituída por módulos de pré-processamento, detecção de faces, rastreamento, extração de características, agrupamento, análise de similaridade temporal e reagrupamento espacial. A abordagem de agrupamento de faces proposta alcançou os objetivos planejados obtendo resultados superiores (no tocante a diferentes métricas) a métodos avaliados utilizando as bases de vídeos YouTube Celebrities (KIM et al., 2008) e SAIVT-Bnews (GHAEMMAGHAMI, DEAN e SRIDHARAN, 2013).
publishDate 2016
dc.date.none.fl_str_mv 2016
2018-06-06T11:40:34Z
2018-06-06
2018-06-06T11:40:34Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/894
MOURA, E. S. Agrupamento de faces em vídeos digitais. 2016. 129 f. Tese (Doutorado em Ciência da Computação) – Programa de Pós-Graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande, Paraíba, Brasil, 2016. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/894
url http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/894
identifier_str_mv MOURA, E. S. Agrupamento de faces em vídeos digitais. 2016. 129 f. Tese (Doutorado em Ciência da Computação) – Programa de Pós-Graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande, Paraíba, Brasil, 2016. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/894
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
UFCG
publisher.none.fl_str_mv Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
UFCG
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFCG
instname:Universidade Federal de Campina Grande (UFCG)
instacron:UFCG
instname_str Universidade Federal de Campina Grande (UFCG)
instacron_str UFCG
institution UFCG
reponame_str Biblioteca Digital de Teses e Dissertações da UFCG
collection Biblioteca Digital de Teses e Dissertações da UFCG
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG)
repository.mail.fl_str_mv bdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.br
_version_ 1809744353057308672