Otimização em tempo real de uma planta de tratamento de efluentes utilizando técnicas de aprendizado de máquina.

Detalhes bibliográficos
Autor(a) principal: VILAR, Damiris Valeska Farias.
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFCG
Texto Completo: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/32744
Resumo: O tratamento de águas residuais utilizando o processo de lodos ativados é uma técnica de alta eficiência na remoção de compostos orgânicos e produtos nitrogenados, tornando-se amplamente utilizada e viabilizando a reutilização das águas tratadas. A modelagem computacional tem sido uma ferramenta essencial para melhorar o desempenho dos sistemas de tratamento, permitindo o planejamento e análise das estações de tratamento de efluentes. Diversos modelos preditivos, como o ASM para sistemas de lodos ativados e o BSM para o tratamento biológico em reatores de lodo ativado, têm sido desenvolvidos para avaliar estratégias de controle em estações de tratamento. Com o intuito de aprimorar esses processos, o uso de metamodelos tem sido explorado, oferecendo uma representação simplificada e otimizada do modelo original e resultando em economia de tempo e recursos computacionais em várias áreas, incluindo engenharia e ciência. A pesquisa propõe a otimização em tempo real de uma planta de tratamento de efluentes por meio de técnicas de aprendizado de máquina, utilizando o modelo BSM1 e metamodelos kriging. O estudo visou compreender o desempenho dos otimizadores nas simulações de processos de tratamento de águas residuais, avaliando diferentes métricas para identificar tendências e eficiência. Os resultados evidenciaram a confiabilidade do kriging na geração de metamodelos, com todas as combinações apresentando resultados satisfatórios. Os otimizadores "matlab", “filtersd” e "ipopt" mostraram-se eficazes na função objetivo e no atendimento de restrições, enquanto o "nomad" e "nlopt" apresentaram desempenho inferior. A abordagem de otimização RTO demonstrou resultados satisfatórios, possibilitando uma melhor compreensão dos processos envolvidos. A combinação dessas técnicas mostra-se promissora para aprimorar a eficiência operacional das estações de tratamento de águas residuais, com o potencial de contribuir significativamente para uma gestão sustentável dos recursos hídricos e uma redução do impacto ambiental.
id UFCG_3f24dd841740b3854f57686836fdf3cc
oai_identifier_str oai:localhost:riufcg/32744
network_acronym_str UFCG
network_name_str Biblioteca Digital de Teses e Dissertações da UFCG
repository_id_str 4851
spelling Otimização em tempo real de uma planta de tratamento de efluentes utilizando técnicas de aprendizado de máquina.Real-time optimization of an wastewater treatment plant using machine learning techniques.BSM1Tratamento de efluentesMetamodelosKrigingRTOWastewater treatmentMeta modelsEngenharia QuímicaO tratamento de águas residuais utilizando o processo de lodos ativados é uma técnica de alta eficiência na remoção de compostos orgânicos e produtos nitrogenados, tornando-se amplamente utilizada e viabilizando a reutilização das águas tratadas. A modelagem computacional tem sido uma ferramenta essencial para melhorar o desempenho dos sistemas de tratamento, permitindo o planejamento e análise das estações de tratamento de efluentes. Diversos modelos preditivos, como o ASM para sistemas de lodos ativados e o BSM para o tratamento biológico em reatores de lodo ativado, têm sido desenvolvidos para avaliar estratégias de controle em estações de tratamento. Com o intuito de aprimorar esses processos, o uso de metamodelos tem sido explorado, oferecendo uma representação simplificada e otimizada do modelo original e resultando em economia de tempo e recursos computacionais em várias áreas, incluindo engenharia e ciência. A pesquisa propõe a otimização em tempo real de uma planta de tratamento de efluentes por meio de técnicas de aprendizado de máquina, utilizando o modelo BSM1 e metamodelos kriging. O estudo visou compreender o desempenho dos otimizadores nas simulações de processos de tratamento de águas residuais, avaliando diferentes métricas para identificar tendências e eficiência. Os resultados evidenciaram a confiabilidade do kriging na geração de metamodelos, com todas as combinações apresentando resultados satisfatórios. Os otimizadores "matlab", “filtersd” e "ipopt" mostraram-se eficazes na função objetivo e no atendimento de restrições, enquanto o "nomad" e "nlopt" apresentaram desempenho inferior. A abordagem de otimização RTO demonstrou resultados satisfatórios, possibilitando uma melhor compreensão dos processos envolvidos. A combinação dessas técnicas mostra-se promissora para aprimorar a eficiência operacional das estações de tratamento de águas residuais, com o potencial de contribuir significativamente para uma gestão sustentável dos recursos hídricos e uma redução do impacto ambiental.Wastewater treatment using the activated sludge process is a highly efficient technique for the removal of organic compounds and nitrogenous products, becoming widely used and enabling the reuse of treated waters. Computational modeling has been an essential tool to enhance the performance of treatment systems, allowing for the planning and analysis of effluent treatment plants. Several predictive models, such as ASM for activated sludge systems and BSM for biological treatment in activated sludge reactors, have been developed to evaluate control strategies in treatment plants. To improve these processes, the use of metamodels has been explored, offering a simplified and optimized representation of the original model and resulting in time and computational resources savings across various fields, including engineering and science. This research proposes real-time optimization of an effluent treatment plant through machine learning techniques, utilizing the BSM1 model and kriging metamodels. The study aimed to understand the performance of optimizers in simulations of wastewater treatment processes, evaluating different metrics to identify trends and efficiency. The results demonstrated the reliability of kriging in generating metamodels, with all combinations yielding satisfactory outcomes. The optimizers "matlab," "filtersd," and "ipopt" proved effective in the objective function and compliance with constraints, while "nomad" and "nlopt" exhibited lower performance. The RTO optimization approach yielded satisfactory results, enabling a better understanding of the involved processes. The combination of these techniques holds promise to enhance the operational efficiency of wastewater treatment plants, with the potential to significantly contribute to sustainable water resource management and environmental impact reduction.Universidade Federal de Campina GrandeBrasilCentro de Ciências e Tecnologia - CCTPÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICAUFCGARAÚJO, Antonio Carlos Brandão de.ARAÚJO, A. C. B.http://lattes.cnpq.br/7308979392690336SILVA JUNIOR, Heleno Bispo da.SILVA, Sidinei Kleber daVILAR, Damiris Valeska Farias.2023-09-282023-11-09T17:57:32Z2023-11-092023-11-09T17:57:32Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/32744VILAR, Damiris Valeska Farias. Otimização em tempo real de uma planta de tratamento de efluentes utilizando técnicas de aprendizado de máquina. 2023. 101 f. Dissertação (Mestardo em Engenharia Química) – Programa de Pós-Graduação em Engenharia Química, Centro de Ciências e Tecnologia, Universidade Federal de Campina Grande, Paraíba, Brasil, 2023.porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFCGinstname:Universidade Federal de Campina Grande (UFCG)instacron:UFCG2023-11-09T17:57:32Zoai:localhost:riufcg/32744Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.ufcg.edu.br/PUBhttp://dspace.sti.ufcg.edu.br:8080/oai/requestbdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.bropendoar:48512023-11-09T17:57:32Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG)false
dc.title.none.fl_str_mv Otimização em tempo real de uma planta de tratamento de efluentes utilizando técnicas de aprendizado de máquina.
Real-time optimization of an wastewater treatment plant using machine learning techniques.
title Otimização em tempo real de uma planta de tratamento de efluentes utilizando técnicas de aprendizado de máquina.
spellingShingle Otimização em tempo real de uma planta de tratamento de efluentes utilizando técnicas de aprendizado de máquina.
VILAR, Damiris Valeska Farias.
BSM1
Tratamento de efluentes
Metamodelos
Kriging
RTO
Wastewater treatment
Meta models
Engenharia Química
title_short Otimização em tempo real de uma planta de tratamento de efluentes utilizando técnicas de aprendizado de máquina.
title_full Otimização em tempo real de uma planta de tratamento de efluentes utilizando técnicas de aprendizado de máquina.
title_fullStr Otimização em tempo real de uma planta de tratamento de efluentes utilizando técnicas de aprendizado de máquina.
title_full_unstemmed Otimização em tempo real de uma planta de tratamento de efluentes utilizando técnicas de aprendizado de máquina.
title_sort Otimização em tempo real de uma planta de tratamento de efluentes utilizando técnicas de aprendizado de máquina.
author VILAR, Damiris Valeska Farias.
author_facet VILAR, Damiris Valeska Farias.
author_role author
dc.contributor.none.fl_str_mv ARAÚJO, Antonio Carlos Brandão de.
ARAÚJO, A. C. B.
http://lattes.cnpq.br/7308979392690336
SILVA JUNIOR, Heleno Bispo da.
SILVA, Sidinei Kleber da
dc.contributor.author.fl_str_mv VILAR, Damiris Valeska Farias.
dc.subject.por.fl_str_mv BSM1
Tratamento de efluentes
Metamodelos
Kriging
RTO
Wastewater treatment
Meta models
Engenharia Química
topic BSM1
Tratamento de efluentes
Metamodelos
Kriging
RTO
Wastewater treatment
Meta models
Engenharia Química
description O tratamento de águas residuais utilizando o processo de lodos ativados é uma técnica de alta eficiência na remoção de compostos orgânicos e produtos nitrogenados, tornando-se amplamente utilizada e viabilizando a reutilização das águas tratadas. A modelagem computacional tem sido uma ferramenta essencial para melhorar o desempenho dos sistemas de tratamento, permitindo o planejamento e análise das estações de tratamento de efluentes. Diversos modelos preditivos, como o ASM para sistemas de lodos ativados e o BSM para o tratamento biológico em reatores de lodo ativado, têm sido desenvolvidos para avaliar estratégias de controle em estações de tratamento. Com o intuito de aprimorar esses processos, o uso de metamodelos tem sido explorado, oferecendo uma representação simplificada e otimizada do modelo original e resultando em economia de tempo e recursos computacionais em várias áreas, incluindo engenharia e ciência. A pesquisa propõe a otimização em tempo real de uma planta de tratamento de efluentes por meio de técnicas de aprendizado de máquina, utilizando o modelo BSM1 e metamodelos kriging. O estudo visou compreender o desempenho dos otimizadores nas simulações de processos de tratamento de águas residuais, avaliando diferentes métricas para identificar tendências e eficiência. Os resultados evidenciaram a confiabilidade do kriging na geração de metamodelos, com todas as combinações apresentando resultados satisfatórios. Os otimizadores "matlab", “filtersd” e "ipopt" mostraram-se eficazes na função objetivo e no atendimento de restrições, enquanto o "nomad" e "nlopt" apresentaram desempenho inferior. A abordagem de otimização RTO demonstrou resultados satisfatórios, possibilitando uma melhor compreensão dos processos envolvidos. A combinação dessas técnicas mostra-se promissora para aprimorar a eficiência operacional das estações de tratamento de águas residuais, com o potencial de contribuir significativamente para uma gestão sustentável dos recursos hídricos e uma redução do impacto ambiental.
publishDate 2023
dc.date.none.fl_str_mv 2023-09-28
2023-11-09T17:57:32Z
2023-11-09
2023-11-09T17:57:32Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/32744
VILAR, Damiris Valeska Farias. Otimização em tempo real de uma planta de tratamento de efluentes utilizando técnicas de aprendizado de máquina. 2023. 101 f. Dissertação (Mestardo em Engenharia Química) – Programa de Pós-Graduação em Engenharia Química, Centro de Ciências e Tecnologia, Universidade Federal de Campina Grande, Paraíba, Brasil, 2023.
url http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/32744
identifier_str_mv VILAR, Damiris Valeska Farias. Otimização em tempo real de uma planta de tratamento de efluentes utilizando técnicas de aprendizado de máquina. 2023. 101 f. Dissertação (Mestardo em Engenharia Química) – Programa de Pós-Graduação em Engenharia Química, Centro de Ciências e Tecnologia, Universidade Federal de Campina Grande, Paraíba, Brasil, 2023.
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Campina Grande
Brasil
Centro de Ciências e Tecnologia - CCT
PÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICA
UFCG
publisher.none.fl_str_mv Universidade Federal de Campina Grande
Brasil
Centro de Ciências e Tecnologia - CCT
PÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICA
UFCG
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFCG
instname:Universidade Federal de Campina Grande (UFCG)
instacron:UFCG
instname_str Universidade Federal de Campina Grande (UFCG)
instacron_str UFCG
institution UFCG
reponame_str Biblioteca Digital de Teses e Dissertações da UFCG
collection Biblioteca Digital de Teses e Dissertações da UFCG
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG)
repository.mail.fl_str_mv bdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.br
_version_ 1809744599518806016