Ranking de relevância baseado em informações geográficas e sociais.

Detalhes bibliográficos
Autor(a) principal: ROCHA, Júlio Henrique.
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFCG
Texto Completo: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/661
Resumo: Recuperação de Informação Geográfica (GIR) é uma área de pesquisa que desenvolve e viabiliza a construção de mecanismos de busca por conteúdos distribuídos pela Internet envolvendo algum contexto geográfico. Os motores de busca geográfica, que são artefatos produzidos na área de GIR, podem ser especificados para trabalhar em diversos contextos (e.g., esportes, concursos públicos), buscando um tratamento adequado ao tipo de documento manipulado. Atualmente, a comunidade científica e o meio comercial vêm concentrando esforços na construção de motores de busca geográfica com o foco em encontrar notícias distribuídas na Internet. Contudo, motores de busca (geográfica ou não) com foco em notícias, deveriam considerar o fator de credibilidade da informação contida nas mesmas no momento de ordená-las. Infelizmente, na maior parte das vezes, isso não acontece. Mensurar a credibilidade de notícias é uma atividade onerosa e complexa, por exigir o conhecimento dos fatos relatados. Dessa forma, os motores de busca acabam deixando a cargo do usuário a responsabilidade em confiar no que está sendo lido. Nesse contexto, esta dissertação propõe um método de ranking de relevância com foco em notícias e baseado em informações colhidas em redes sociais, para valorar um grau de credibilidade e, assim, ordená-las. O valor de credibilidade da notícia é calculado considerando a afinidade dos usuários, que a compartilharam em sua rede social, com as localidades mencionadas na notícia. Por fim, o ranking de relevância proposto é integrado a uma ferramenta de busca e leitura de notícias, denominada GeoSEn News, que viabiliza a consulta por meio de diversas operações espaciais e permite a visualização dos resultados em diferentes perspectivas. Tal ferramenta foi utilizada para avaliar o método proposto através de experimentos utilizando dados colhidos na rede social Twitter e em mídias informativas espalhadas pelo Brasil. A avaliação apresentou resultados promissores e atestou a viabilidade da construção do ranking de relevância que se baseia em informações coletadas em redes sociais.
id UFCG_51aefb7bc609b9844338617711562b11
oai_identifier_str oai:localhost:riufcg/661
network_acronym_str UFCG
network_name_str Biblioteca Digital de Teses e Dissertações da UFCG
repository_id_str 4851
spelling Ranking de relevância baseado em informações geográficas e sociais.Geographic Information RetrievalRanking de RelevânciaNotíciasRedes SociaisRelevance RankingNewsSocial NetworkCiênciasCiência da ComputaçãoRecuperação de Informação Geográfica (GIR) é uma área de pesquisa que desenvolve e viabiliza a construção de mecanismos de busca por conteúdos distribuídos pela Internet envolvendo algum contexto geográfico. Os motores de busca geográfica, que são artefatos produzidos na área de GIR, podem ser especificados para trabalhar em diversos contextos (e.g., esportes, concursos públicos), buscando um tratamento adequado ao tipo de documento manipulado. Atualmente, a comunidade científica e o meio comercial vêm concentrando esforços na construção de motores de busca geográfica com o foco em encontrar notícias distribuídas na Internet. Contudo, motores de busca (geográfica ou não) com foco em notícias, deveriam considerar o fator de credibilidade da informação contida nas mesmas no momento de ordená-las. Infelizmente, na maior parte das vezes, isso não acontece. Mensurar a credibilidade de notícias é uma atividade onerosa e complexa, por exigir o conhecimento dos fatos relatados. Dessa forma, os motores de busca acabam deixando a cargo do usuário a responsabilidade em confiar no que está sendo lido. Nesse contexto, esta dissertação propõe um método de ranking de relevância com foco em notícias e baseado em informações colhidas em redes sociais, para valorar um grau de credibilidade e, assim, ordená-las. O valor de credibilidade da notícia é calculado considerando a afinidade dos usuários, que a compartilharam em sua rede social, com as localidades mencionadas na notícia. Por fim, o ranking de relevância proposto é integrado a uma ferramenta de busca e leitura de notícias, denominada GeoSEn News, que viabiliza a consulta por meio de diversas operações espaciais e permite a visualização dos resultados em diferentes perspectivas. Tal ferramenta foi utilizada para avaliar o método proposto através de experimentos utilizando dados colhidos na rede social Twitter e em mídias informativas espalhadas pelo Brasil. A avaliação apresentou resultados promissores e atestou a viabilidade da construção do ranking de relevância que se baseia em informações coletadas em redes sociais.Geographic Information Retrieval is a research field that develops and allows the construction of search engines to retrieve information with geographic context that is available on the Internet. Produced in the GIR field, geographic search engines can be specified to work in many different contexts (e.g., as sports, concerts), seeking proper ways to handle the chosen document type. Nowadays, the scientific community and the commerce are focusing efforts on building geographic search engines to find news over the Internet. However, search engines (geographical or otherwise) focused on news should consider the information credibility factor in the moment of ranking them. Unfortunately, in most cases, it is not what happens. Measure the news credibility is a complex and expensive task since it requires knowledge of the stated facts. Thereby, search engines end up giving the user the responsibility to trust or not what is being read. In this context, this work proposes a relevance ranking method focused in news and based on information collected from social networks, to evaluate a credibility factor and thus, rank them. The news credibility value is calculated considering the affinity of users who have shared it on their social network with the locations mentioned in the news. Lastly, the proposed relevance ranking is integrated with a search engine and reading news tool called GeoSEn News, which enables various spatial operations queries and allows result visualization in different perspectives. Through experiments using data collected in the social network Twitter and informational media throughout Brazil, this tool was used to evaluate the proposed method. The evaluation presented promising results and certified the feasibility of building relevance ranking based on information collected from social networks.CapesUniversidade Federal de Campina GrandeBrasilCentro de Engenharia Elétrica e Informática - CEEIPÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃOUFCGBAPTISTA, Cláudio de Souza.BAPTISTA, C. S.http://lattes.cnpq.br/0104124422364023CAMPELO, Cláudio Elízio Calazans.CAMPELO, C. E. C.http://lattes.cnpq.br/2042247762832979ROCHA, Júlio Henrique.20162018-05-14T13:17:14Z2018-05-142018-05-14T13:17:14Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/661ROCHA, J. H. Ranking de relevância baseado em informações geográficas e sociais. 2016. 116 f. Dissertação (Mestrado em Ciência da Computação) – Programa de Pós-Graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande, Paraíba, Brasil, 2016. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/661porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFCGinstname:Universidade Federal de Campina Grande (UFCG)instacron:UFCG2022-06-02T23:51:18Zoai:localhost:riufcg/661Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.ufcg.edu.br/PUBhttp://dspace.sti.ufcg.edu.br:8080/oai/requestbdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.bropendoar:48512022-06-02T23:51:18Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG)false
dc.title.none.fl_str_mv Ranking de relevância baseado em informações geográficas e sociais.
title Ranking de relevância baseado em informações geográficas e sociais.
spellingShingle Ranking de relevância baseado em informações geográficas e sociais.
ROCHA, Júlio Henrique.
Geographic Information Retrieval
Ranking de Relevância
Notícias
Redes Sociais
Relevance Ranking
News
Social Network
Ciências
Ciência da Computação
title_short Ranking de relevância baseado em informações geográficas e sociais.
title_full Ranking de relevância baseado em informações geográficas e sociais.
title_fullStr Ranking de relevância baseado em informações geográficas e sociais.
title_full_unstemmed Ranking de relevância baseado em informações geográficas e sociais.
title_sort Ranking de relevância baseado em informações geográficas e sociais.
author ROCHA, Júlio Henrique.
author_facet ROCHA, Júlio Henrique.
author_role author
dc.contributor.none.fl_str_mv BAPTISTA, Cláudio de Souza.
BAPTISTA, C. S.
http://lattes.cnpq.br/0104124422364023
CAMPELO, Cláudio Elízio Calazans.
CAMPELO, C. E. C.
http://lattes.cnpq.br/2042247762832979
dc.contributor.author.fl_str_mv ROCHA, Júlio Henrique.
dc.subject.por.fl_str_mv Geographic Information Retrieval
Ranking de Relevância
Notícias
Redes Sociais
Relevance Ranking
News
Social Network
Ciências
Ciência da Computação
topic Geographic Information Retrieval
Ranking de Relevância
Notícias
Redes Sociais
Relevance Ranking
News
Social Network
Ciências
Ciência da Computação
description Recuperação de Informação Geográfica (GIR) é uma área de pesquisa que desenvolve e viabiliza a construção de mecanismos de busca por conteúdos distribuídos pela Internet envolvendo algum contexto geográfico. Os motores de busca geográfica, que são artefatos produzidos na área de GIR, podem ser especificados para trabalhar em diversos contextos (e.g., esportes, concursos públicos), buscando um tratamento adequado ao tipo de documento manipulado. Atualmente, a comunidade científica e o meio comercial vêm concentrando esforços na construção de motores de busca geográfica com o foco em encontrar notícias distribuídas na Internet. Contudo, motores de busca (geográfica ou não) com foco em notícias, deveriam considerar o fator de credibilidade da informação contida nas mesmas no momento de ordená-las. Infelizmente, na maior parte das vezes, isso não acontece. Mensurar a credibilidade de notícias é uma atividade onerosa e complexa, por exigir o conhecimento dos fatos relatados. Dessa forma, os motores de busca acabam deixando a cargo do usuário a responsabilidade em confiar no que está sendo lido. Nesse contexto, esta dissertação propõe um método de ranking de relevância com foco em notícias e baseado em informações colhidas em redes sociais, para valorar um grau de credibilidade e, assim, ordená-las. O valor de credibilidade da notícia é calculado considerando a afinidade dos usuários, que a compartilharam em sua rede social, com as localidades mencionadas na notícia. Por fim, o ranking de relevância proposto é integrado a uma ferramenta de busca e leitura de notícias, denominada GeoSEn News, que viabiliza a consulta por meio de diversas operações espaciais e permite a visualização dos resultados em diferentes perspectivas. Tal ferramenta foi utilizada para avaliar o método proposto através de experimentos utilizando dados colhidos na rede social Twitter e em mídias informativas espalhadas pelo Brasil. A avaliação apresentou resultados promissores e atestou a viabilidade da construção do ranking de relevância que se baseia em informações coletadas em redes sociais.
publishDate 2016
dc.date.none.fl_str_mv 2016
2018-05-14T13:17:14Z
2018-05-14
2018-05-14T13:17:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/661
ROCHA, J. H. Ranking de relevância baseado em informações geográficas e sociais. 2016. 116 f. Dissertação (Mestrado em Ciência da Computação) – Programa de Pós-Graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande, Paraíba, Brasil, 2016. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/661
url http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/661
identifier_str_mv ROCHA, J. H. Ranking de relevância baseado em informações geográficas e sociais. 2016. 116 f. Dissertação (Mestrado em Ciência da Computação) – Programa de Pós-Graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande, Paraíba, Brasil, 2016. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/661
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
UFCG
publisher.none.fl_str_mv Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
UFCG
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFCG
instname:Universidade Federal de Campina Grande (UFCG)
instacron:UFCG
instname_str Universidade Federal de Campina Grande (UFCG)
instacron_str UFCG
institution UFCG
reponame_str Biblioteca Digital de Teses e Dissertações da UFCG
collection Biblioteca Digital de Teses e Dissertações da UFCG
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG)
repository.mail.fl_str_mv bdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.br
_version_ 1809744351468716032