Avaliação de estabilidade de tensão através das técnicas de inteligência artificial.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFCG |
Texto Completo: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/3692 |
Resumo: | Nesta Tese são apresentados os resultados obtidos na avaliação da segurança dos sistemas de potência em relação à instabilidade de tensão utilizando a rede neural RPROP e o sistema neuro-fuzzy ANFIS (Adaptive Neuro-Fuzzy Inference System) combinados num arranjo híbrido. Este arranjo híbrido tem seu desempenho comparado com os desempenhos apresentados pela rede neural Multilayer Perceptron (MLP), pelo RPROP, kNN (k - Nearest Neighbour) e pelo sistema neuro-fuzzy ANFIS. São apresentados também os resultados utilizando um combinador de redes neurais atrvés dois classificadores (RBF-DDA e kNN). Estes classificadores foram combinados utilizando um método denominado Soma Máxima Ponderada Modificada (SMPM). Estes resultados são comparados com os desempenhos apresentados pelas redes neurais MLP e RBF-DDA atuando sozinhas e pelo kNN. Os classificadores foram treinados para dar como saída, de um conjunto de variáveis de entrada (ponto de operação da rede elétrica), a condição de segurança do sistema entre uma de duas, quais sejam, seguro ou alerta. Estas condições foram obtidas em função do Índice Margem calculado através do Método da Continuação. É ressaltada a importância fundamental da correta formação dos conjuntos de padrões de treinamento e teste, e também a importância da estratégia da divisão do sistema de potência em conjuntos de barras (áreas) para aumentar o desempenho do sistema de avaliação de segurança. A eficiência da abordagem proposta foi avaliada através dos resultados obtidos com dois sistemas de potências reais: o sistema Sul-Sudeste de 77 barras; e o sistema Norte Nordeste de 482 barras. |
id |
UFCG_c866f46ddc806b0c0dedd20f5017bc17 |
---|---|
oai_identifier_str |
oai:localhost:riufcg/3692 |
network_acronym_str |
UFCG |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFCG |
repository_id_str |
4851 |
spelling |
Avaliação de estabilidade de tensão através das técnicas de inteligência artificial.Tension stability evaluation through artificial intelligence techniques.Estabilidade de tensão - avaliaçãoAvaliação de estabilidade de tensãoInteligência artificialSistemas de potênciaRedes neurais artificiaisReconhecimento de padrõesEquações do fluxo de potênciaEstabilidade de tensão on-lineVoltage stability - evaluationArtificial intelligenceArtificial neural networksPower flow equationsElectrical engineeringEngenharia Elétrica.Nesta Tese são apresentados os resultados obtidos na avaliação da segurança dos sistemas de potência em relação à instabilidade de tensão utilizando a rede neural RPROP e o sistema neuro-fuzzy ANFIS (Adaptive Neuro-Fuzzy Inference System) combinados num arranjo híbrido. Este arranjo híbrido tem seu desempenho comparado com os desempenhos apresentados pela rede neural Multilayer Perceptron (MLP), pelo RPROP, kNN (k - Nearest Neighbour) e pelo sistema neuro-fuzzy ANFIS. São apresentados também os resultados utilizando um combinador de redes neurais atrvés dois classificadores (RBF-DDA e kNN). Estes classificadores foram combinados utilizando um método denominado Soma Máxima Ponderada Modificada (SMPM). Estes resultados são comparados com os desempenhos apresentados pelas redes neurais MLP e RBF-DDA atuando sozinhas e pelo kNN. Os classificadores foram treinados para dar como saída, de um conjunto de variáveis de entrada (ponto de operação da rede elétrica), a condição de segurança do sistema entre uma de duas, quais sejam, seguro ou alerta. Estas condições foram obtidas em função do Índice Margem calculado através do Método da Continuação. É ressaltada a importância fundamental da correta formação dos conjuntos de padrões de treinamento e teste, e também a importância da estratégia da divisão do sistema de potência em conjuntos de barras (áreas) para aumentar o desempenho do sistema de avaliação de segurança. A eficiência da abordagem proposta foi avaliada através dos resultados obtidos com dois sistemas de potências reais: o sistema Sul-Sudeste de 77 barras; e o sistema Norte Nordeste de 482 barras.In this Thesis the results obtained in the evaluation of the security of power systems in relation to the voltage instability using the neural network RPROP and the neuro-fuzzy system ANFIS (Adaptive Neuro-Fuzzy Inference System), combined in a hybrid arrangement are presented. This hybrid arrangement has its performance compared with the results presented by the neural network Multilayer Perceptron (MLP), RPROP, kNN (k - Nearest Neighbour) and ANFIS. It is also presented the results using a combination of neural networks made by two classifiers (RBF-DDA and kNN). These classifiers were combined using a method denominated Modified Weighted Maxim Sum (MWMS). These results are compared with the results presented by the neural networks MLP and RBF-DDA acting alone, and for the kNN. The classifiers were trained to give as exit, of a group of input variables (operation point of electric system), the condition of security of the system among one of two: secure or alert. These conditions had been obtained by the Margin Index calculated through the Continuation Method. It is important to standout the right formation of the sets of training and test data that had been presented to the Classifiers, and also the importance of the strategy of the division of the power system in groups of bars (areas) to increase the performance of the security assessment. The efficiency of the approach was evaluated through the results gotten with two real systems: the South-Southeast Brazilian system of 77 bus; and North-Northeast system of 482 bus.Universidade Federal de Campina GrandeBrasilCentro de Engenharia Elétrica e Informática - CEEIPÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICAUFCGMOTA, Wellington Santos.MOTA, W. S.http://lattes.cnpq.br/5452666875321325SOUZA, Antonio Carlos Zambroni de.SALGADO, Roberto de Souza.SOUZA, Benemar Alencar de.ASSIS, Francisco Marcos de.SODRÉ, Eduardo de Aguiar.2006-04-072019-05-07T15:09:59Z2019-05-072019-05-07T15:09:59Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttp://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/3692SODRÉ, Eduardo de Aguiar. Avaliação de estabilidade de tensão através das técnicas de inteligência artificial. 2006. 163f. (Tese de Doutorado em Engenharia Elétrica), Programa de Pós-Graduação em Engenharia Elétrica, Centro de Engenharia Elétrica e Informática , Universidade Federal de Campina Grande – Paraíba Brasil, 2010.porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFCGinstname:Universidade Federal de Campina Grande (UFCG)instacron:UFCG2021-04-15T12:09:17Zoai:localhost:riufcg/3692Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.ufcg.edu.br/PUBhttp://dspace.sti.ufcg.edu.br:8080/oai/requestbdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.bropendoar:48512021-04-15T12:09:17Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG)false |
dc.title.none.fl_str_mv |
Avaliação de estabilidade de tensão através das técnicas de inteligência artificial. Tension stability evaluation through artificial intelligence techniques. |
title |
Avaliação de estabilidade de tensão através das técnicas de inteligência artificial. |
spellingShingle |
Avaliação de estabilidade de tensão através das técnicas de inteligência artificial. SODRÉ, Eduardo de Aguiar. Estabilidade de tensão - avaliação Avaliação de estabilidade de tensão Inteligência artificial Sistemas de potência Redes neurais artificiais Reconhecimento de padrões Equações do fluxo de potência Estabilidade de tensão on-line Voltage stability - evaluation Artificial intelligence Artificial neural networks Power flow equations Electrical engineering Engenharia Elétrica. |
title_short |
Avaliação de estabilidade de tensão através das técnicas de inteligência artificial. |
title_full |
Avaliação de estabilidade de tensão através das técnicas de inteligência artificial. |
title_fullStr |
Avaliação de estabilidade de tensão através das técnicas de inteligência artificial. |
title_full_unstemmed |
Avaliação de estabilidade de tensão através das técnicas de inteligência artificial. |
title_sort |
Avaliação de estabilidade de tensão através das técnicas de inteligência artificial. |
author |
SODRÉ, Eduardo de Aguiar. |
author_facet |
SODRÉ, Eduardo de Aguiar. |
author_role |
author |
dc.contributor.none.fl_str_mv |
MOTA, Wellington Santos. MOTA, W. S. http://lattes.cnpq.br/5452666875321325 SOUZA, Antonio Carlos Zambroni de. SALGADO, Roberto de Souza. SOUZA, Benemar Alencar de. ASSIS, Francisco Marcos de. |
dc.contributor.author.fl_str_mv |
SODRÉ, Eduardo de Aguiar. |
dc.subject.por.fl_str_mv |
Estabilidade de tensão - avaliação Avaliação de estabilidade de tensão Inteligência artificial Sistemas de potência Redes neurais artificiais Reconhecimento de padrões Equações do fluxo de potência Estabilidade de tensão on-line Voltage stability - evaluation Artificial intelligence Artificial neural networks Power flow equations Electrical engineering Engenharia Elétrica. |
topic |
Estabilidade de tensão - avaliação Avaliação de estabilidade de tensão Inteligência artificial Sistemas de potência Redes neurais artificiais Reconhecimento de padrões Equações do fluxo de potência Estabilidade de tensão on-line Voltage stability - evaluation Artificial intelligence Artificial neural networks Power flow equations Electrical engineering Engenharia Elétrica. |
description |
Nesta Tese são apresentados os resultados obtidos na avaliação da segurança dos sistemas de potência em relação à instabilidade de tensão utilizando a rede neural RPROP e o sistema neuro-fuzzy ANFIS (Adaptive Neuro-Fuzzy Inference System) combinados num arranjo híbrido. Este arranjo híbrido tem seu desempenho comparado com os desempenhos apresentados pela rede neural Multilayer Perceptron (MLP), pelo RPROP, kNN (k - Nearest Neighbour) e pelo sistema neuro-fuzzy ANFIS. São apresentados também os resultados utilizando um combinador de redes neurais atrvés dois classificadores (RBF-DDA e kNN). Estes classificadores foram combinados utilizando um método denominado Soma Máxima Ponderada Modificada (SMPM). Estes resultados são comparados com os desempenhos apresentados pelas redes neurais MLP e RBF-DDA atuando sozinhas e pelo kNN. Os classificadores foram treinados para dar como saída, de um conjunto de variáveis de entrada (ponto de operação da rede elétrica), a condição de segurança do sistema entre uma de duas, quais sejam, seguro ou alerta. Estas condições foram obtidas em função do Índice Margem calculado através do Método da Continuação. É ressaltada a importância fundamental da correta formação dos conjuntos de padrões de treinamento e teste, e também a importância da estratégia da divisão do sistema de potência em conjuntos de barras (áreas) para aumentar o desempenho do sistema de avaliação de segurança. A eficiência da abordagem proposta foi avaliada através dos resultados obtidos com dois sistemas de potências reais: o sistema Sul-Sudeste de 77 barras; e o sistema Norte Nordeste de 482 barras. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-04-07 2019-05-07T15:09:59Z 2019-05-07 2019-05-07T15:09:59Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/3692 SODRÉ, Eduardo de Aguiar. Avaliação de estabilidade de tensão através das técnicas de inteligência artificial. 2006. 163f. (Tese de Doutorado em Engenharia Elétrica), Programa de Pós-Graduação em Engenharia Elétrica, Centro de Engenharia Elétrica e Informática , Universidade Federal de Campina Grande – Paraíba Brasil, 2010. |
url |
http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/3692 |
identifier_str_mv |
SODRÉ, Eduardo de Aguiar. Avaliação de estabilidade de tensão através das técnicas de inteligência artificial. 2006. 163f. (Tese de Doutorado em Engenharia Elétrica), Programa de Pós-Graduação em Engenharia Elétrica, Centro de Engenharia Elétrica e Informática , Universidade Federal de Campina Grande – Paraíba Brasil, 2010. |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Campina Grande Brasil Centro de Engenharia Elétrica e Informática - CEEI PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UFCG |
publisher.none.fl_str_mv |
Universidade Federal de Campina Grande Brasil Centro de Engenharia Elétrica e Informática - CEEI PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UFCG |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFCG instname:Universidade Federal de Campina Grande (UFCG) instacron:UFCG |
instname_str |
Universidade Federal de Campina Grande (UFCG) |
instacron_str |
UFCG |
institution |
UFCG |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFCG |
collection |
Biblioteca Digital de Teses e Dissertações da UFCG |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG) |
repository.mail.fl_str_mv |
bdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.br |
_version_ |
1809744372711817216 |