Forecasting Quarterly Brazilian Gdp Growth Rate With Linear and Nonlinear Diffusion Index Models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFC |
Texto Completo: | http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=1294 |
Resumo: | The present study uses linear and non-linear diffusion index models to produce one-stepahead forecast of quarterly Brazilian GDP growth rate. Diffusion index models are like dynamic factors models. These factors are latent variables that represent a common property from the explanatory variables, then allowing a considerably reduction of its number in econometric models elaborated to attend the main objective of this work. The non-linear diffusion index models used in this thesis are not only parsimonious ones, but also they try to capture economic cycles using for this goal a Threshold diffusion index model and a Markov-Switching diffusion index model. The former is used, besides for forecasting purpose, also to test if there is a non-linear pattern in the quarterly Brazilian GDP growth rate. |
id |
UFC_27ab31aedcc0031ae5a6b1f0b4678ec3 |
---|---|
oai_identifier_str |
oai:www.teses.ufc.br:1159 |
network_acronym_str |
UFC |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFC |
spelling |
info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisForecasting Quarterly Brazilian Gdp Growth Rate With Linear and Nonlinear Diffusion Index ModelsForecasting Quarterly Brazilian Gdp Growth Rate With Linear and Nonlinear Diffusion Index Models2005-05-05Luiz Ivan de Melo Castelar04506766334http://lattes.cnpq.br/8710490356999657Emerson LuÃs Lemos Marinho07303416315Almir Bittencourt da Silva05947200638http://lattes.cnpq.br/1591770886209876Paulo de Melo Jorge Neto35625660344http://lattes.cnpq.br/7568927888412924Marcelo Lettieri Siqueira11921831855http://lattes.cnpq.br/718659789623035541059689200http://lattes.cnpq.br/9723758439733361Roberto Tatiwa FerreiraUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em Economia - CAENUFCBRProduto Interno BrutoECONOMIAThe present study uses linear and non-linear diffusion index models to produce one-stepahead forecast of quarterly Brazilian GDP growth rate. Diffusion index models are like dynamic factors models. These factors are latent variables that represent a common property from the explanatory variables, then allowing a considerably reduction of its number in econometric models elaborated to attend the main objective of this work. The non-linear diffusion index models used in this thesis are not only parsimonious ones, but also they try to capture economic cycles using for this goal a Threshold diffusion index model and a Markov-Switching diffusion index model. The former is used, besides for forecasting purpose, also to test if there is a non-linear pattern in the quarterly Brazilian GDP growth rate.Esta Tese estuda modelos lineares e nÃo lineares de Ãndices de difusÃo para prever, em um perÃodo à frente, a taxa de crescimento trimestral do PIB brasileiro. Os modelos de Ãndice de difusÃo assemelham-se aos modelos de fatores dinÃmicos. Estes fatores sÃo variÃveis nÃo observÃveis e representam uma caracterÃstica em comum Ãs variÃveis explicativas, permitindo a reduÃÃo significativa do nÃmero dessas no modelo economÃtrico proposto para atender o objetivo principal deste trabalho. AlÃm de parcimoniosos, os modelos utilizados nesta Tese se propÃem a capitar as fases de recessÃo e expansÃo econÃmica, atravÃs de modelos nÃo lineares do tipo Threshold Effect e Markov-Switching, servindo o primeiro destes dois para testar a hipÃtese de que existe nÃo linearidades na variÃvel sob estudo.CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superiorhttp://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=1294application/pdfinfo:eu-repo/semantics/openAccessengreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:14:12Zmail@mail.com - |
dc.title..fl_str_mv |
Forecasting Quarterly Brazilian Gdp Growth Rate With Linear and Nonlinear Diffusion Index Models |
dc.title.alternative.en.fl_str_mv |
Forecasting Quarterly Brazilian Gdp Growth Rate With Linear and Nonlinear Diffusion Index Models |
title |
Forecasting Quarterly Brazilian Gdp Growth Rate With Linear and Nonlinear Diffusion Index Models |
spellingShingle |
Forecasting Quarterly Brazilian Gdp Growth Rate With Linear and Nonlinear Diffusion Index Models Roberto Tatiwa Ferreira Produto Interno Bruto ECONOMIA |
title_short |
Forecasting Quarterly Brazilian Gdp Growth Rate With Linear and Nonlinear Diffusion Index Models |
title_full |
Forecasting Quarterly Brazilian Gdp Growth Rate With Linear and Nonlinear Diffusion Index Models |
title_fullStr |
Forecasting Quarterly Brazilian Gdp Growth Rate With Linear and Nonlinear Diffusion Index Models |
title_full_unstemmed |
Forecasting Quarterly Brazilian Gdp Growth Rate With Linear and Nonlinear Diffusion Index Models |
title_sort |
Forecasting Quarterly Brazilian Gdp Growth Rate With Linear and Nonlinear Diffusion Index Models |
author |
Roberto Tatiwa Ferreira |
author_facet |
Roberto Tatiwa Ferreira |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Luiz Ivan de Melo Castelar |
dc.contributor.advisor1ID.fl_str_mv |
04506766334 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/8710490356999657 |
dc.contributor.referee1.fl_str_mv |
Emerson LuÃs Lemos Marinho |
dc.contributor.referee1ID.fl_str_mv |
07303416315 |
dc.contributor.referee2.fl_str_mv |
Almir Bittencourt da Silva |
dc.contributor.referee2ID.fl_str_mv |
05947200638 |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/1591770886209876 |
dc.contributor.referee3.fl_str_mv |
Paulo de Melo Jorge Neto |
dc.contributor.referee3ID.fl_str_mv |
35625660344 |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/7568927888412924 |
dc.contributor.referee4.fl_str_mv |
Marcelo Lettieri Siqueira |
dc.contributor.referee4ID.fl_str_mv |
11921831855 |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/7186597896230355 |
dc.contributor.authorID.fl_str_mv |
41059689200 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/9723758439733361 |
dc.contributor.author.fl_str_mv |
Roberto Tatiwa Ferreira |
contributor_str_mv |
Luiz Ivan de Melo Castelar Emerson LuÃs Lemos Marinho Almir Bittencourt da Silva Paulo de Melo Jorge Neto Marcelo Lettieri Siqueira |
dc.subject.por.fl_str_mv |
Produto Interno Bruto |
topic |
Produto Interno Bruto ECONOMIA |
dc.subject.cnpq.fl_str_mv |
ECONOMIA |
dc.description.sponsorship.fl_txt_mv |
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior |
dc.description.abstract.por.fl_txt_mv |
The present study uses linear and non-linear diffusion index models to produce one-stepahead forecast of quarterly Brazilian GDP growth rate. Diffusion index models are like dynamic factors models. These factors are latent variables that represent a common property from the explanatory variables, then allowing a considerably reduction of its number in econometric models elaborated to attend the main objective of this work. The non-linear diffusion index models used in this thesis are not only parsimonious ones, but also they try to capture economic cycles using for this goal a Threshold diffusion index model and a Markov-Switching diffusion index model. The former is used, besides for forecasting purpose, also to test if there is a non-linear pattern in the quarterly Brazilian GDP growth rate. |
dc.description.abstract.eng.fl_txt_mv |
Esta Tese estuda modelos lineares e nÃo lineares de Ãndices de difusÃo para prever, em um perÃodo à frente, a taxa de crescimento trimestral do PIB brasileiro. Os modelos de Ãndice de difusÃo assemelham-se aos modelos de fatores dinÃmicos. Estes fatores sÃo variÃveis nÃo observÃveis e representam uma caracterÃstica em comum Ãs variÃveis explicativas, permitindo a reduÃÃo significativa do nÃmero dessas no modelo economÃtrico proposto para atender o objetivo principal deste trabalho. AlÃm de parcimoniosos, os modelos utilizados nesta Tese se propÃem a capitar as fases de recessÃo e expansÃo econÃmica, atravÃs de modelos nÃo lineares do tipo Threshold Effect e Markov-Switching, servindo o primeiro destes dois para testar a hipÃtese de que existe nÃo linearidades na variÃvel sob estudo. |
description |
The present study uses linear and non-linear diffusion index models to produce one-stepahead forecast of quarterly Brazilian GDP growth rate. Diffusion index models are like dynamic factors models. These factors are latent variables that represent a common property from the explanatory variables, then allowing a considerably reduction of its number in econometric models elaborated to attend the main objective of this work. The non-linear diffusion index models used in this thesis are not only parsimonious ones, but also they try to capture economic cycles using for this goal a Threshold diffusion index model and a Markov-Switching diffusion index model. The former is used, besides for forecasting purpose, also to test if there is a non-linear pattern in the quarterly Brazilian GDP growth rate. |
publishDate |
2005 |
dc.date.issued.fl_str_mv |
2005-05-05 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
status_str |
publishedVersion |
format |
doctoralThesis |
dc.identifier.uri.fl_str_mv |
http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=1294 |
url |
http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=1294 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Cearà |
dc.publisher.program.fl_str_mv |
Programa de PÃs-GraduaÃÃo em Economia - CAEN |
dc.publisher.initials.fl_str_mv |
UFC |
dc.publisher.country.fl_str_mv |
BR |
publisher.none.fl_str_mv |
Universidade Federal do Cearà |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFC instname:Universidade Federal do Ceará instacron:UFC |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFC |
collection |
Biblioteca Digital de Teses e Dissertações da UFC |
instname_str |
Universidade Federal do Ceará |
instacron_str |
UFC |
institution |
UFC |
repository.name.fl_str_mv |
-
|
repository.mail.fl_str_mv |
mail@mail.com |
_version_ |
1643295118209318912 |