AvaliaÃÃo de redes neurais competitivas em tarefas de quantizaÃÃo vetorial:um estudo comparativo
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFC |
Texto Completo: | http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=2016 |
Resumo: | Esta dissertaÃÃo tem como principal meta realizar um estudo comparativo do desempenho de algoritmos de redes neurais competitivas nÃo-supervisionadas em problemas de quantizaÃÃo vetorial (QV) e aplicaÃÃes correlatas, tais como anÃlise de agrupamentos (clustering) e compressÃo de imagens. A motivaÃÃo para tanto parte da percepÃÃo de que hà uma relativa escassez de estudos comparativos sistemÃticos entre algoritmos neurais e nÃo-neurais de anÃlise de agrupamentos na literatura especializada. Um total de sete algoritmos sÃo avaliados, a saber: algoritmo K -mÃdias e as redes WTA, FSCL, SOM, Neural-Gas, FuzzyCL e RPCL. De particular interesse à a seleÃÃo do nÃmero Ãtimo de neurÃnios. NÃo hà um mÃtodo que funcione para todas as situaÃÃes, restando portanto avaliar a influÃncia que cada tipo de mÃtrica exerce sobre algoritmo em estudo. Por exemplo, os algoritmos de QV supracitados sÃo bastante usados em tarefas de clustering. Neste tipo de aplicaÃÃo, a validaÃÃo dos agrupamentos à feita com base em Ãndices que quantificam os graus de compacidade e separabilidade dos agrupamentos encontrados, tais como Ãndice Dunn e Ãndice Davies-Bouldin (DB). Jà em tarefas de compressÃo de imagens, determinado algoritmo de QV à avaliado em funÃÃo da qualidade da informaÃÃo reconstruÃda, daà as mÃtricas mais usadas serem o erro quadrÃtico mÃdio de quantizaÃÃo (EQMQ) ou a relaÃÃo sinal-ruÃdo de pico (PSNR). Empiricamente verificou-se que, enquanto o Ãndice DB favorece arquiteturas com poucos protÃtipos e o Dunn com muitos, as mÃtricas EQMQ e PSNR sempre favorecem nÃmeros ainda maiores. Nenhuma das mÃtricas supracitadas leva em consideraÃÃo o nÃmero de parÃmetros do modelo. Em funÃÃo disso, esta dissertaÃÃo propÃe o uso do critÃrio de informaÃÃo de Akaike (AIC) e o critÃrio do comprimento descritivo mÃnimo (MDL) de Rissanen para selecionar o nÃmero Ãtimo de protÃtipos. Este tipo de mÃtrica mostra-se Ãtil na busca do nÃmero de protÃtipos que satisfaÃa simultaneamente critÃrios opostos, ou seja, critÃrios que buscam o menor erro de reconstruÃÃo a todo custo (MSE e PSNR) e critÃrios que buscam clusters mais compactos e coesos (Ãndices Dunn e DB). Como conseqÃÃncia, o nÃmero de protÃtipos obtidos pelas mÃtricas AIC e MDL à geralmente um valor intermediÃrio, i.e. nem tÃo baixo quanto o sugerido pelos Ãndices Dunn e DB, nem tÃo altos quanto o sugerido pelas mÃtricas MSE e PSNR. Outra conclusÃo importante à que nÃo necessariamente os algoritmos mais sofisticados do ponto de vista da modelagem, tais como as redes SOM e Neural-Gas, sÃo os que apresentam melhores desempenhos em tarefas de clustering e quantizaÃÃo vetorial. Os algoritmos FSCL e FuzzyCL sÃo os que apresentam melhores resultados em tarefas de quantizaÃÃo vetorial, com a rede FSCL apresentando melhor relaÃÃo custo-benefÃcio, em funÃÃo do seu menor custo computacional. Para finalizar, vale ressaltar que qualquer que seja o algoritmo escolhido, se o mesmo tiver seus parÃmetros devidamente ajustados e seus desempenhos devidamente avaliados, as diferenÃas de performance entre os mesmos sÃo desprezÃveis, ficando como critÃrio de desempate o custo computacional. |
id |
UFC_4a85c4b86c43030020bbe0a9702885ba |
---|---|
oai_identifier_str |
oai:www.teses.ufc.br:1837 |
network_acronym_str |
UFC |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFC |
spelling |
info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisAvaliaÃÃo de redes neurais competitivas em tarefas de quantizaÃÃo vetorial:um estudo comparativo Evaluation of competitive neural networks in tasks of vector quantization (VQ): a comparative study2007-10-06Guilherme de Alencar Barreto32841450368http://lattes.cnpq.br/890200246142211263181673315http://lattes.cnpq.br/3959203532800201Magnus Alencar da cruzUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em Engenharia de TeleinformÃticaUFCBRredes neurais competitivas aprendizado nÃo-supervisionado validaÃÃo de agrupamentos quantizaÃÃo vetorial robustez ao ruÃdocompetitive neural networks unsupervised learning cluster validation vector quantization robustness to noise.TELEINFORMATICAEsta dissertaÃÃo tem como principal meta realizar um estudo comparativo do desempenho de algoritmos de redes neurais competitivas nÃo-supervisionadas em problemas de quantizaÃÃo vetorial (QV) e aplicaÃÃes correlatas, tais como anÃlise de agrupamentos (clustering) e compressÃo de imagens. A motivaÃÃo para tanto parte da percepÃÃo de que hà uma relativa escassez de estudos comparativos sistemÃticos entre algoritmos neurais e nÃo-neurais de anÃlise de agrupamentos na literatura especializada. Um total de sete algoritmos sÃo avaliados, a saber: algoritmo K -mÃdias e as redes WTA, FSCL, SOM, Neural-Gas, FuzzyCL e RPCL. De particular interesse à a seleÃÃo do nÃmero Ãtimo de neurÃnios. NÃo hà um mÃtodo que funcione para todas as situaÃÃes, restando portanto avaliar a influÃncia que cada tipo de mÃtrica exerce sobre algoritmo em estudo. Por exemplo, os algoritmos de QV supracitados sÃo bastante usados em tarefas de clustering. Neste tipo de aplicaÃÃo, a validaÃÃo dos agrupamentos à feita com base em Ãndices que quantificam os graus de compacidade e separabilidade dos agrupamentos encontrados, tais como Ãndice Dunn e Ãndice Davies-Bouldin (DB). Jà em tarefas de compressÃo de imagens, determinado algoritmo de QV à avaliado em funÃÃo da qualidade da informaÃÃo reconstruÃda, daà as mÃtricas mais usadas serem o erro quadrÃtico mÃdio de quantizaÃÃo (EQMQ) ou a relaÃÃo sinal-ruÃdo de pico (PSNR). Empiricamente verificou-se que, enquanto o Ãndice DB favorece arquiteturas com poucos protÃtipos e o Dunn com muitos, as mÃtricas EQMQ e PSNR sempre favorecem nÃmeros ainda maiores. Nenhuma das mÃtricas supracitadas leva em consideraÃÃo o nÃmero de parÃmetros do modelo. Em funÃÃo disso, esta dissertaÃÃo propÃe o uso do critÃrio de informaÃÃo de Akaike (AIC) e o critÃrio do comprimento descritivo mÃnimo (MDL) de Rissanen para selecionar o nÃmero Ãtimo de protÃtipos. Este tipo de mÃtrica mostra-se Ãtil na busca do nÃmero de protÃtipos que satisfaÃa simultaneamente critÃrios opostos, ou seja, critÃrios que buscam o menor erro de reconstruÃÃo a todo custo (MSE e PSNR) e critÃrios que buscam clusters mais compactos e coesos (Ãndices Dunn e DB). Como conseqÃÃncia, o nÃmero de protÃtipos obtidos pelas mÃtricas AIC e MDL à geralmente um valor intermediÃrio, i.e. nem tÃo baixo quanto o sugerido pelos Ãndices Dunn e DB, nem tÃo altos quanto o sugerido pelas mÃtricas MSE e PSNR. Outra conclusÃo importante à que nÃo necessariamente os algoritmos mais sofisticados do ponto de vista da modelagem, tais como as redes SOM e Neural-Gas, sÃo os que apresentam melhores desempenhos em tarefas de clustering e quantizaÃÃo vetorial. Os algoritmos FSCL e FuzzyCL sÃo os que apresentam melhores resultados em tarefas de quantizaÃÃo vetorial, com a rede FSCL apresentando melhor relaÃÃo custo-benefÃcio, em funÃÃo do seu menor custo computacional. Para finalizar, vale ressaltar que qualquer que seja o algoritmo escolhido, se o mesmo tiver seus parÃmetros devidamente ajustados e seus desempenhos devidamente avaliados, as diferenÃas de performance entre os mesmos sÃo desprezÃveis, ficando como critÃrio de desempate o custo computacional. The main goal of this master thesis was to carry out a comparative study of the performance of algorithms of unsupervised competitive neural networks in problems of vector quantization (VQ) tasks and related applications, such as cluster analysis and image compression. This study is mainly motivated by the relative scarcity of systematic comparisons between neural and nonneural algorithms for VQ in specialized literature. A total of seven algorithms are evaluated, namely: K-means, WTA, FSCL, SOM, Neural-Gas, FuzzyCL and RPCL. Of particular interest is the problem of selecting an adequate number of neurons given a particular vector quantization problem. Since there is no widespread method that works satisfactorily for all applications, the remaining alternative is to evaluate the influence that each type of evaluation metric has on a specific algorithm. For example, the aforementioned vector quantization algorithms are widely used in clustering-related tasks. For this type of application, cluster validation is based on indexes that quantify the degrees of compactness and separability among clusters, such as the Dunn Index and the Davies- Bouldin (DB) Index. In image compression tasks, however, a given vector quantization algorithm is evaluated in terms of the quality of the reconstructed information, so that the most used evaluation metrics are the mean squared quantization error (MSQE) and the peak signal-to-noise ratio (PSNR). This work verifies empirically that, while the indices Dunn and DB or favors architectures with many prototypes (Dunn) or with few prototypes (DB), metrics MSE and PSNR always favor architectures with well bigger amounts. None of the evaluation metrics cited previously takes into account the number of parameters of the model. Thus, this thesis evaluates the feasibility of the use of the Akaikeâs information criterion (AIC) and Rissanenâs minimum description length (MDL) criterion to select the optimal number of prototypes. This type of evaluation metric indeed reveals itself useful in the search of the number of prototypes that simultaneously satisfies conflicting criteria, i.e. those favoring more compact and cohesive clusters (Dunn and DB indices) versus those searching for very low reconstruction errors (MSE and PSNR). Thus, the number of prototypes suggested by AIC and MDL is generally an intermediate value, i.e nor so low as much suggested for the indexes Dunn and DB, nor so high as much suggested one for metric MSE and PSNR. Another important conclusion is that sophisticated models, such as the SOM and Neural- Gas networks, not necessarily have the best performances in clustering and VQ tasks. For example, the algorithms FSCL and FuzzyCL present better results in terms of the the of the reconstructed information, with the FSCL presenting better cost-benefit ratio due to its lower computational cost. As a final remark, it is worth emphasizing that if a given algorithm has its parameters suitably tuned and its performance fairly evaluated, the differences in performance compared to others prototype-based algorithms is minimum, with the coputational cost being used to break ties.nÃo hÃhttp://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=2016application/pdfinfo:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:15:07Zmail@mail.com - |
dc.title.pt.fl_str_mv |
AvaliaÃÃo de redes neurais competitivas em tarefas de quantizaÃÃo vetorial:um estudo comparativo |
dc.title.alternative.en.fl_str_mv |
Evaluation of competitive neural networks in tasks of vector quantization (VQ): a comparative study |
title |
AvaliaÃÃo de redes neurais competitivas em tarefas de quantizaÃÃo vetorial:um estudo comparativo |
spellingShingle |
AvaliaÃÃo de redes neurais competitivas em tarefas de quantizaÃÃo vetorial:um estudo comparativo Magnus Alencar da cruz redes neurais competitivas aprendizado nÃo-supervisionado validaÃÃo de agrupamentos quantizaÃÃo vetorial robustez ao ruÃdo competitive neural networks unsupervised learning cluster validation vector quantization robustness to noise. TELEINFORMATICA |
title_short |
AvaliaÃÃo de redes neurais competitivas em tarefas de quantizaÃÃo vetorial:um estudo comparativo |
title_full |
AvaliaÃÃo de redes neurais competitivas em tarefas de quantizaÃÃo vetorial:um estudo comparativo |
title_fullStr |
AvaliaÃÃo de redes neurais competitivas em tarefas de quantizaÃÃo vetorial:um estudo comparativo |
title_full_unstemmed |
AvaliaÃÃo de redes neurais competitivas em tarefas de quantizaÃÃo vetorial:um estudo comparativo |
title_sort |
AvaliaÃÃo de redes neurais competitivas em tarefas de quantizaÃÃo vetorial:um estudo comparativo |
author |
Magnus Alencar da cruz |
author_facet |
Magnus Alencar da cruz |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Guilherme de Alencar Barreto |
dc.contributor.advisor1ID.fl_str_mv |
32841450368 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/8902002461422112 |
dc.contributor.authorID.fl_str_mv |
63181673315 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/3959203532800201 |
dc.contributor.author.fl_str_mv |
Magnus Alencar da cruz |
contributor_str_mv |
Guilherme de Alencar Barreto |
dc.subject.por.fl_str_mv |
redes neurais competitivas aprendizado nÃo-supervisionado validaÃÃo de agrupamentos quantizaÃÃo vetorial robustez ao ruÃdo |
topic |
redes neurais competitivas aprendizado nÃo-supervisionado validaÃÃo de agrupamentos quantizaÃÃo vetorial robustez ao ruÃdo competitive neural networks unsupervised learning cluster validation vector quantization robustness to noise. TELEINFORMATICA |
dc.subject.eng.fl_str_mv |
competitive neural networks unsupervised learning cluster validation vector quantization robustness to noise. |
dc.subject.cnpq.fl_str_mv |
TELEINFORMATICA |
dc.description.sponsorship.fl_txt_mv |
nÃo hà |
dc.description.abstract.por.fl_txt_mv |
Esta dissertaÃÃo tem como principal meta realizar um estudo comparativo do desempenho de algoritmos de redes neurais competitivas nÃo-supervisionadas em problemas de quantizaÃÃo vetorial (QV) e aplicaÃÃes correlatas, tais como anÃlise de agrupamentos (clustering) e compressÃo de imagens. A motivaÃÃo para tanto parte da percepÃÃo de que hà uma relativa escassez de estudos comparativos sistemÃticos entre algoritmos neurais e nÃo-neurais de anÃlise de agrupamentos na literatura especializada. Um total de sete algoritmos sÃo avaliados, a saber: algoritmo K -mÃdias e as redes WTA, FSCL, SOM, Neural-Gas, FuzzyCL e RPCL. De particular interesse à a seleÃÃo do nÃmero Ãtimo de neurÃnios. NÃo hà um mÃtodo que funcione para todas as situaÃÃes, restando portanto avaliar a influÃncia que cada tipo de mÃtrica exerce sobre algoritmo em estudo. Por exemplo, os algoritmos de QV supracitados sÃo bastante usados em tarefas de clustering. Neste tipo de aplicaÃÃo, a validaÃÃo dos agrupamentos à feita com base em Ãndices que quantificam os graus de compacidade e separabilidade dos agrupamentos encontrados, tais como Ãndice Dunn e Ãndice Davies-Bouldin (DB). Jà em tarefas de compressÃo de imagens, determinado algoritmo de QV à avaliado em funÃÃo da qualidade da informaÃÃo reconstruÃda, daà as mÃtricas mais usadas serem o erro quadrÃtico mÃdio de quantizaÃÃo (EQMQ) ou a relaÃÃo sinal-ruÃdo de pico (PSNR). Empiricamente verificou-se que, enquanto o Ãndice DB favorece arquiteturas com poucos protÃtipos e o Dunn com muitos, as mÃtricas EQMQ e PSNR sempre favorecem nÃmeros ainda maiores. Nenhuma das mÃtricas supracitadas leva em consideraÃÃo o nÃmero de parÃmetros do modelo. Em funÃÃo disso, esta dissertaÃÃo propÃe o uso do critÃrio de informaÃÃo de Akaike (AIC) e o critÃrio do comprimento descritivo mÃnimo (MDL) de Rissanen para selecionar o nÃmero Ãtimo de protÃtipos. Este tipo de mÃtrica mostra-se Ãtil na busca do nÃmero de protÃtipos que satisfaÃa simultaneamente critÃrios opostos, ou seja, critÃrios que buscam o menor erro de reconstruÃÃo a todo custo (MSE e PSNR) e critÃrios que buscam clusters mais compactos e coesos (Ãndices Dunn e DB). Como conseqÃÃncia, o nÃmero de protÃtipos obtidos pelas mÃtricas AIC e MDL à geralmente um valor intermediÃrio, i.e. nem tÃo baixo quanto o sugerido pelos Ãndices Dunn e DB, nem tÃo altos quanto o sugerido pelas mÃtricas MSE e PSNR. Outra conclusÃo importante à que nÃo necessariamente os algoritmos mais sofisticados do ponto de vista da modelagem, tais como as redes SOM e Neural-Gas, sÃo os que apresentam melhores desempenhos em tarefas de clustering e quantizaÃÃo vetorial. Os algoritmos FSCL e FuzzyCL sÃo os que apresentam melhores resultados em tarefas de quantizaÃÃo vetorial, com a rede FSCL apresentando melhor relaÃÃo custo-benefÃcio, em funÃÃo do seu menor custo computacional. Para finalizar, vale ressaltar que qualquer que seja o algoritmo escolhido, se o mesmo tiver seus parÃmetros devidamente ajustados e seus desempenhos devidamente avaliados, as diferenÃas de performance entre os mesmos sÃo desprezÃveis, ficando como critÃrio de desempate o custo computacional. |
dc.description.abstract.eng.fl_txt_mv |
The main goal of this master thesis was to carry out a comparative study of the performance of algorithms of unsupervised competitive neural networks in problems of vector quantization (VQ) tasks and related applications, such as cluster analysis and image compression. This study is mainly motivated by the relative scarcity of systematic comparisons between neural and nonneural algorithms for VQ in specialized literature. A total of seven algorithms are evaluated, namely: K-means, WTA, FSCL, SOM, Neural-Gas, FuzzyCL and RPCL. Of particular interest is the problem of selecting an adequate number of neurons given a particular vector quantization problem. Since there is no widespread method that works satisfactorily for all applications, the remaining alternative is to evaluate the influence that each type of evaluation metric has on a specific algorithm. For example, the aforementioned vector quantization algorithms are widely used in clustering-related tasks. For this type of application, cluster validation is based on indexes that quantify the degrees of compactness and separability among clusters, such as the Dunn Index and the Davies- Bouldin (DB) Index. In image compression tasks, however, a given vector quantization algorithm is evaluated in terms of the quality of the reconstructed information, so that the most used evaluation metrics are the mean squared quantization error (MSQE) and the peak signal-to-noise ratio (PSNR). This work verifies empirically that, while the indices Dunn and DB or favors architectures with many prototypes (Dunn) or with few prototypes (DB), metrics MSE and PSNR always favor architectures with well bigger amounts. None of the evaluation metrics cited previously takes into account the number of parameters of the model. Thus, this thesis evaluates the feasibility of the use of the Akaikeâs information criterion (AIC) and Rissanenâs minimum description length (MDL) criterion to select the optimal number of prototypes. This type of evaluation metric indeed reveals itself useful in the search of the number of prototypes that simultaneously satisfies conflicting criteria, i.e. those favoring more compact and cohesive clusters (Dunn and DB indices) versus those searching for very low reconstruction errors (MSE and PSNR). Thus, the number of prototypes suggested by AIC and MDL is generally an intermediate value, i.e nor so low as much suggested for the indexes Dunn and DB, nor so high as much suggested one for metric MSE and PSNR. Another important conclusion is that sophisticated models, such as the SOM and Neural- Gas networks, not necessarily have the best performances in clustering and VQ tasks. For example, the algorithms FSCL and FuzzyCL present better results in terms of the the of the reconstructed information, with the FSCL presenting better cost-benefit ratio due to its lower computational cost. As a final remark, it is worth emphasizing that if a given algorithm has its parameters suitably tuned and its performance fairly evaluated, the differences in performance compared to others prototype-based algorithms is minimum, with the coputational cost being used to break ties. |
description |
Esta dissertaÃÃo tem como principal meta realizar um estudo comparativo do desempenho de algoritmos de redes neurais competitivas nÃo-supervisionadas em problemas de quantizaÃÃo vetorial (QV) e aplicaÃÃes correlatas, tais como anÃlise de agrupamentos (clustering) e compressÃo de imagens. A motivaÃÃo para tanto parte da percepÃÃo de que hà uma relativa escassez de estudos comparativos sistemÃticos entre algoritmos neurais e nÃo-neurais de anÃlise de agrupamentos na literatura especializada. Um total de sete algoritmos sÃo avaliados, a saber: algoritmo K -mÃdias e as redes WTA, FSCL, SOM, Neural-Gas, FuzzyCL e RPCL. De particular interesse à a seleÃÃo do nÃmero Ãtimo de neurÃnios. NÃo hà um mÃtodo que funcione para todas as situaÃÃes, restando portanto avaliar a influÃncia que cada tipo de mÃtrica exerce sobre algoritmo em estudo. Por exemplo, os algoritmos de QV supracitados sÃo bastante usados em tarefas de clustering. Neste tipo de aplicaÃÃo, a validaÃÃo dos agrupamentos à feita com base em Ãndices que quantificam os graus de compacidade e separabilidade dos agrupamentos encontrados, tais como Ãndice Dunn e Ãndice Davies-Bouldin (DB). Jà em tarefas de compressÃo de imagens, determinado algoritmo de QV à avaliado em funÃÃo da qualidade da informaÃÃo reconstruÃda, daà as mÃtricas mais usadas serem o erro quadrÃtico mÃdio de quantizaÃÃo (EQMQ) ou a relaÃÃo sinal-ruÃdo de pico (PSNR). Empiricamente verificou-se que, enquanto o Ãndice DB favorece arquiteturas com poucos protÃtipos e o Dunn com muitos, as mÃtricas EQMQ e PSNR sempre favorecem nÃmeros ainda maiores. Nenhuma das mÃtricas supracitadas leva em consideraÃÃo o nÃmero de parÃmetros do modelo. Em funÃÃo disso, esta dissertaÃÃo propÃe o uso do critÃrio de informaÃÃo de Akaike (AIC) e o critÃrio do comprimento descritivo mÃnimo (MDL) de Rissanen para selecionar o nÃmero Ãtimo de protÃtipos. Este tipo de mÃtrica mostra-se Ãtil na busca do nÃmero de protÃtipos que satisfaÃa simultaneamente critÃrios opostos, ou seja, critÃrios que buscam o menor erro de reconstruÃÃo a todo custo (MSE e PSNR) e critÃrios que buscam clusters mais compactos e coesos (Ãndices Dunn e DB). Como conseqÃÃncia, o nÃmero de protÃtipos obtidos pelas mÃtricas AIC e MDL à geralmente um valor intermediÃrio, i.e. nem tÃo baixo quanto o sugerido pelos Ãndices Dunn e DB, nem tÃo altos quanto o sugerido pelas mÃtricas MSE e PSNR. Outra conclusÃo importante à que nÃo necessariamente os algoritmos mais sofisticados do ponto de vista da modelagem, tais como as redes SOM e Neural-Gas, sÃo os que apresentam melhores desempenhos em tarefas de clustering e quantizaÃÃo vetorial. Os algoritmos FSCL e FuzzyCL sÃo os que apresentam melhores resultados em tarefas de quantizaÃÃo vetorial, com a rede FSCL apresentando melhor relaÃÃo custo-benefÃcio, em funÃÃo do seu menor custo computacional. Para finalizar, vale ressaltar que qualquer que seja o algoritmo escolhido, se o mesmo tiver seus parÃmetros devidamente ajustados e seus desempenhos devidamente avaliados, as diferenÃas de performance entre os mesmos sÃo desprezÃveis, ficando como critÃrio de desempate o custo computacional. |
publishDate |
2007 |
dc.date.issued.fl_str_mv |
2007-10-06 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
status_str |
publishedVersion |
format |
masterThesis |
dc.identifier.uri.fl_str_mv |
http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=2016 |
url |
http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=2016 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Cearà |
dc.publisher.program.fl_str_mv |
Programa de PÃs-GraduaÃÃo em Engenharia de TeleinformÃtica |
dc.publisher.initials.fl_str_mv |
UFC |
dc.publisher.country.fl_str_mv |
BR |
publisher.none.fl_str_mv |
Universidade Federal do Cearà |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFC instname:Universidade Federal do Ceará instacron:UFC |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFC |
collection |
Biblioteca Digital de Teses e Dissertações da UFC |
instname_str |
Universidade Federal do Ceará |
instacron_str |
UFC |
institution |
UFC |
repository.name.fl_str_mv |
-
|
repository.mail.fl_str_mv |
mail@mail.com |
_version_ |
1643295122665766912 |