Structural Properties Electronic and Vibrational Crystals Aspartic Acid (Asp): Computer Simulations in Formalism DFT

Detalhes bibliográficos
Autor(a) principal: Agmael MendonÃa Silva
Data de Publicação: 2015
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFC
Texto Completo: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14934
Resumo: Computer simulations within the Density Functional Theory (DFT) formalism were accomplished to find the structural, electronic and vibrational properties of aspartic acid (Asp) crystals in the L-anhydrous, L-monohydrated, and DL-anhydrous phases. Aspartic acid is a non-essential amino acid with a role in the fadigue resistance mechanism. It also works as an excitatory neurotransmitter in the brain, contributes to eliminate any excess of toxins from the cells and is capable to affect RNA synthesis. The computer codes CASTEP (for crystals) and GAUSSIAN (for molecules) were employed in the present study. For the aspartic acid crystals, LDA and GGA-PBE exchange-correlation functional were used in the simulations, the last one taking into account empirical corrections for dispersive forces (PBE+TS) following the scheme proposed by Tkatchenko and Scheffler. Molecular calculations were carried out using the Gaussian09 program with the hybrid exchange-correlation functional B3LYP and the 6-311+G(d,p) basis set. The molecules were simulated in the gaseous phase and solvated in water within the Polarizable Continuum Model (PCM). Crystalline (optimized unit cells) and molecular (smallest energy conformations) structures obtained from the calculations were compared with experimental results and other theoretical computations. For the L-Asp anhydrous crystal, the optical and vibrational infrared (IR) and Raman spectra were contrasted with experimental measurements, and its band structure suggests it is a semiconductor. For the monohydrated L-Asp crystal, an indirect gap 0,1 eV larger than the gap of the anhydrous crystal is caused due to the role of water in its electronic structure. The DL-Asp anhydrous crystal, on the other hand, exhibits a wide direct band gap, which suggests possible optoelectronic uses. Effective masses obtained for all crystals exhibit an anisotropy which must affect their electronic transport properties, with electric conduction more likely along a direction parallel to the molecular planes for the L-Asp anhydrous system. The analysis of the density of electronic states revealed the contributions per atom and per functional group to the valence and conduction band states. A nice agreement was found between the theoretical IR and Raman spectra and the experimental data for the L-Asp anhydrous crystal, allowing for an adequate interpretation of the normal modes involved in each spectral feature.
id UFC_6ff98a76202ec216dd0ac42dc63789b2
oai_identifier_str oai:www.teses.ufc.br:9062
network_acronym_str UFC
network_name_str Biblioteca Digital de Teses e Dissertações da UFC
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisStructural Properties Electronic and Vibrational Crystals Aspartic Acid (Asp): Computer Simulations in Formalism DFT Propriedades Estruturais, EletrÃnicas e Vibracionais de Cristais do Ãcido AspÃrtico (Asp): SimulaÃÃes Computacionais no Formalismo DFT2015-02-20Ewerton Wagner Santos Caetano71030930325Valder Nogueira Freire12105473334http://lattes.cnpq.br/864792232710095348823163315Agmael MendonÃa SilvaUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em FÃsicaUFCBRFÃsica molecular Teoria do Funcional da Densidade (DFT) AminoÃcidos Ãcido aspÃrtico Espectroscopia RamanMolecular physics Density Functional Theory (DFT) Amino acids Aspartic acid Raman spectroscopy FISICA DA MATERIA CONDENSADAComputer simulations within the Density Functional Theory (DFT) formalism were accomplished to find the structural, electronic and vibrational properties of aspartic acid (Asp) crystals in the L-anhydrous, L-monohydrated, and DL-anhydrous phases. Aspartic acid is a non-essential amino acid with a role in the fadigue resistance mechanism. It also works as an excitatory neurotransmitter in the brain, contributes to eliminate any excess of toxins from the cells and is capable to affect RNA synthesis. The computer codes CASTEP (for crystals) and GAUSSIAN (for molecules) were employed in the present study. For the aspartic acid crystals, LDA and GGA-PBE exchange-correlation functional were used in the simulations, the last one taking into account empirical corrections for dispersive forces (PBE+TS) following the scheme proposed by Tkatchenko and Scheffler. Molecular calculations were carried out using the Gaussian09 program with the hybrid exchange-correlation functional B3LYP and the 6-311+G(d,p) basis set. The molecules were simulated in the gaseous phase and solvated in water within the Polarizable Continuum Model (PCM). Crystalline (optimized unit cells) and molecular (smallest energy conformations) structures obtained from the calculations were compared with experimental results and other theoretical computations. For the L-Asp anhydrous crystal, the optical and vibrational infrared (IR) and Raman spectra were contrasted with experimental measurements, and its band structure suggests it is a semiconductor. For the monohydrated L-Asp crystal, an indirect gap 0,1 eV larger than the gap of the anhydrous crystal is caused due to the role of water in its electronic structure. The DL-Asp anhydrous crystal, on the other hand, exhibits a wide direct band gap, which suggests possible optoelectronic uses. Effective masses obtained for all crystals exhibit an anisotropy which must affect their electronic transport properties, with electric conduction more likely along a direction parallel to the molecular planes for the L-Asp anhydrous system. The analysis of the density of electronic states revealed the contributions per atom and per functional group to the valence and conduction band states. A nice agreement was found between the theoretical IR and Raman spectra and the experimental data for the L-Asp anhydrous crystal, allowing for an adequate interpretation of the normal modes involved in each spectral feature. SimulaÃÃes computacionais no formalismo DFT (Density Functional Theory) foram realizadas para a determinaÃÃo das propriedades estruturais, eletrÃnicas e vibracionais de cristais de Ãcido aspÃrtico (Asp) nas formas cristalinas L-Asp anidro, L-Asp monohidratado e DL-Asp anidro. O Ãcido aspÃrtico à um aminoÃcido nÃo essencial com papel na fisiologia da resistÃncia fÃsica, atuando como neurotransmissor excitatÃrio no cÃrebro, contribuindo para a eliminaÃÃo do excesso de toxinas nas cÃlulas, alÃm de ser capaz de afetar a sÃntese de RNA. Os cÃdigos CASTEP (para cristais) e GAUSSIAN (para molÃculas) foram utilizados no presente estudo. Para os cristais de Ãcido aspÃrtico, os funcionais de troca e correlaÃÃo LDA e GGA-PBE foram empregados nas simulaÃÃes, este Ãltimo incluindo correÃÃes empÃricas para interaÃÃes dispersivas (PBE+TS) de acordo com o esquema de Tkatchenko e Scheffler. Os cÃlculos moleculares foram realizados utilizando o programa Gaussian09 com o funcional hibrido de troca e correlaÃÃo B3LYP e o conjunto de base 6-311+G(d,p). As molÃculas foram simuladas em fase gasosa e em meio aquoso (modelo de solvataÃÃo contÃnuo PCM). As estruturas cristalinas (cÃlulas unitÃrias otimizadas) e moleculares (conformaÃÃes de menor energia) obtidas nos cÃlculos foram comparadas com resultados experimentais e outros cÃlculos teÃricos. No caso do cristal L-Asp anidro, a absorÃÃo Ãptica e os espectros vibracionais IR e Raman tambÃm foram confrontados com medidas experimentais, e sua estrutura de bandas sugere um possÃvel carÃter semicondutor. No caso do cristal L-Asp monohidratado, um gap indireto 0,1 eV maior do que o do cristal anidro reflete o impacto da Ãgua sobre a estrutura eletrÃnica desse cristal. O cristal DL-Asp anidro, por outro lado, exibe um gap direto largo, o que sugere possÃveis usos em optoeletrÃnica. As massas efetivas obtidas para todos os cristais revelam uma anisotropia das propriedades de transporte eletrÃnico, sendo a conduÃÃo elÃtrica mais favorÃvel na direÃÃo paralela aos planos moleculares para o caso L-Asp anidro. A anÃlise da densidade de estados eletrÃnicos permitiu estabelecer a contribuiÃÃo por Ãtomo e por grupo funcional para os estados das bandas de valÃncia e conduÃÃo e um Ãtimo acordo foi obtido entre os espectros vibracionais IR e Raman teÃricos e experimentais do cristal L-Asp anidro, permitindo uma adequada interpretaÃÃo dos modos normais envolvidos em cada pico espectral. FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgicohttp://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14934application/pdfinfo:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:28:31Zmail@mail.com -
dc.title.en.fl_str_mv Structural Properties Electronic and Vibrational Crystals Aspartic Acid (Asp): Computer Simulations in Formalism DFT
dc.title.alternative.pt.fl_str_mv Propriedades Estruturais, EletrÃnicas e Vibracionais de Cristais do Ãcido AspÃrtico (Asp): SimulaÃÃes Computacionais no Formalismo DFT
title Structural Properties Electronic and Vibrational Crystals Aspartic Acid (Asp): Computer Simulations in Formalism DFT
spellingShingle Structural Properties Electronic and Vibrational Crystals Aspartic Acid (Asp): Computer Simulations in Formalism DFT
Agmael MendonÃa Silva
FÃsica molecular
Teoria do Funcional da Densidade (DFT)
AminoÃcidos
Ãcido aspÃrtico
Espectroscopia Raman
Molecular physics
Density Functional Theory (DFT)
Amino acids
Aspartic acid
Raman spectroscopy
FISICA DA MATERIA CONDENSADA
title_short Structural Properties Electronic and Vibrational Crystals Aspartic Acid (Asp): Computer Simulations in Formalism DFT
title_full Structural Properties Electronic and Vibrational Crystals Aspartic Acid (Asp): Computer Simulations in Formalism DFT
title_fullStr Structural Properties Electronic and Vibrational Crystals Aspartic Acid (Asp): Computer Simulations in Formalism DFT
title_full_unstemmed Structural Properties Electronic and Vibrational Crystals Aspartic Acid (Asp): Computer Simulations in Formalism DFT
title_sort Structural Properties Electronic and Vibrational Crystals Aspartic Acid (Asp): Computer Simulations in Formalism DFT
author Agmael MendonÃa Silva
author_facet Agmael MendonÃa Silva
author_role author
dc.contributor.advisor1.fl_str_mv Ewerton Wagner Santos Caetano
dc.contributor.advisor1ID.fl_str_mv 71030930325
dc.contributor.advisor-co1.fl_str_mv Valder Nogueira Freire
dc.contributor.advisor-co1ID.fl_str_mv 12105473334
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/8647922327100953
dc.contributor.authorID.fl_str_mv 48823163315
dc.contributor.author.fl_str_mv Agmael MendonÃa Silva
contributor_str_mv Ewerton Wagner Santos Caetano
Valder Nogueira Freire
dc.subject.por.fl_str_mv FÃsica molecular
Teoria do Funcional da Densidade (DFT)
AminoÃcidos
Ãcido aspÃrtico
Espectroscopia Raman
topic FÃsica molecular
Teoria do Funcional da Densidade (DFT)
AminoÃcidos
Ãcido aspÃrtico
Espectroscopia Raman
Molecular physics
Density Functional Theory (DFT)
Amino acids
Aspartic acid
Raman spectroscopy
FISICA DA MATERIA CONDENSADA
dc.subject.eng.fl_str_mv Molecular physics
Density Functional Theory (DFT)
Amino acids
Aspartic acid
Raman spectroscopy
dc.subject.cnpq.fl_str_mv FISICA DA MATERIA CONDENSADA
dc.description.sponsorship.fl_txt_mv FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico
dc.description.abstract.por.fl_txt_mv Computer simulations within the Density Functional Theory (DFT) formalism were accomplished to find the structural, electronic and vibrational properties of aspartic acid (Asp) crystals in the L-anhydrous, L-monohydrated, and DL-anhydrous phases. Aspartic acid is a non-essential amino acid with a role in the fadigue resistance mechanism. It also works as an excitatory neurotransmitter in the brain, contributes to eliminate any excess of toxins from the cells and is capable to affect RNA synthesis. The computer codes CASTEP (for crystals) and GAUSSIAN (for molecules) were employed in the present study. For the aspartic acid crystals, LDA and GGA-PBE exchange-correlation functional were used in the simulations, the last one taking into account empirical corrections for dispersive forces (PBE+TS) following the scheme proposed by Tkatchenko and Scheffler. Molecular calculations were carried out using the Gaussian09 program with the hybrid exchange-correlation functional B3LYP and the 6-311+G(d,p) basis set. The molecules were simulated in the gaseous phase and solvated in water within the Polarizable Continuum Model (PCM). Crystalline (optimized unit cells) and molecular (smallest energy conformations) structures obtained from the calculations were compared with experimental results and other theoretical computations. For the L-Asp anhydrous crystal, the optical and vibrational infrared (IR) and Raman spectra were contrasted with experimental measurements, and its band structure suggests it is a semiconductor. For the monohydrated L-Asp crystal, an indirect gap 0,1 eV larger than the gap of the anhydrous crystal is caused due to the role of water in its electronic structure. The DL-Asp anhydrous crystal, on the other hand, exhibits a wide direct band gap, which suggests possible optoelectronic uses. Effective masses obtained for all crystals exhibit an anisotropy which must affect their electronic transport properties, with electric conduction more likely along a direction parallel to the molecular planes for the L-Asp anhydrous system. The analysis of the density of electronic states revealed the contributions per atom and per functional group to the valence and conduction band states. A nice agreement was found between the theoretical IR and Raman spectra and the experimental data for the L-Asp anhydrous crystal, allowing for an adequate interpretation of the normal modes involved in each spectral feature.
SimulaÃÃes computacionais no formalismo DFT (Density Functional Theory) foram realizadas para a determinaÃÃo das propriedades estruturais, eletrÃnicas e vibracionais de cristais de Ãcido aspÃrtico (Asp) nas formas cristalinas L-Asp anidro, L-Asp monohidratado e DL-Asp anidro. O Ãcido aspÃrtico à um aminoÃcido nÃo essencial com papel na fisiologia da resistÃncia fÃsica, atuando como neurotransmissor excitatÃrio no cÃrebro, contribuindo para a eliminaÃÃo do excesso de toxinas nas cÃlulas, alÃm de ser capaz de afetar a sÃntese de RNA. Os cÃdigos CASTEP (para cristais) e GAUSSIAN (para molÃculas) foram utilizados no presente estudo. Para os cristais de Ãcido aspÃrtico, os funcionais de troca e correlaÃÃo LDA e GGA-PBE foram empregados nas simulaÃÃes, este Ãltimo incluindo correÃÃes empÃricas para interaÃÃes dispersivas (PBE+TS) de acordo com o esquema de Tkatchenko e Scheffler. Os cÃlculos moleculares foram realizados utilizando o programa Gaussian09 com o funcional hibrido de troca e correlaÃÃo B3LYP e o conjunto de base 6-311+G(d,p). As molÃculas foram simuladas em fase gasosa e em meio aquoso (modelo de solvataÃÃo contÃnuo PCM). As estruturas cristalinas (cÃlulas unitÃrias otimizadas) e moleculares (conformaÃÃes de menor energia) obtidas nos cÃlculos foram comparadas com resultados experimentais e outros cÃlculos teÃricos. No caso do cristal L-Asp anidro, a absorÃÃo Ãptica e os espectros vibracionais IR e Raman tambÃm foram confrontados com medidas experimentais, e sua estrutura de bandas sugere um possÃvel carÃter semicondutor. No caso do cristal L-Asp monohidratado, um gap indireto 0,1 eV maior do que o do cristal anidro reflete o impacto da Ãgua sobre a estrutura eletrÃnica desse cristal. O cristal DL-Asp anidro, por outro lado, exibe um gap direto largo, o que sugere possÃveis usos em optoeletrÃnica. As massas efetivas obtidas para todos os cristais revelam uma anisotropia das propriedades de transporte eletrÃnico, sendo a conduÃÃo elÃtrica mais favorÃvel na direÃÃo paralela aos planos moleculares para o caso L-Asp anidro. A anÃlise da densidade de estados eletrÃnicos permitiu estabelecer a contribuiÃÃo por Ãtomo e por grupo funcional para os estados das bandas de valÃncia e conduÃÃo e um Ãtimo acordo foi obtido entre os espectros vibracionais IR e Raman teÃricos e experimentais do cristal L-Asp anidro, permitindo uma adequada interpretaÃÃo dos modos normais envolvidos em cada pico espectral.
description Computer simulations within the Density Functional Theory (DFT) formalism were accomplished to find the structural, electronic and vibrational properties of aspartic acid (Asp) crystals in the L-anhydrous, L-monohydrated, and DL-anhydrous phases. Aspartic acid is a non-essential amino acid with a role in the fadigue resistance mechanism. It also works as an excitatory neurotransmitter in the brain, contributes to eliminate any excess of toxins from the cells and is capable to affect RNA synthesis. The computer codes CASTEP (for crystals) and GAUSSIAN (for molecules) were employed in the present study. For the aspartic acid crystals, LDA and GGA-PBE exchange-correlation functional were used in the simulations, the last one taking into account empirical corrections for dispersive forces (PBE+TS) following the scheme proposed by Tkatchenko and Scheffler. Molecular calculations were carried out using the Gaussian09 program with the hybrid exchange-correlation functional B3LYP and the 6-311+G(d,p) basis set. The molecules were simulated in the gaseous phase and solvated in water within the Polarizable Continuum Model (PCM). Crystalline (optimized unit cells) and molecular (smallest energy conformations) structures obtained from the calculations were compared with experimental results and other theoretical computations. For the L-Asp anhydrous crystal, the optical and vibrational infrared (IR) and Raman spectra were contrasted with experimental measurements, and its band structure suggests it is a semiconductor. For the monohydrated L-Asp crystal, an indirect gap 0,1 eV larger than the gap of the anhydrous crystal is caused due to the role of water in its electronic structure. The DL-Asp anhydrous crystal, on the other hand, exhibits a wide direct band gap, which suggests possible optoelectronic uses. Effective masses obtained for all crystals exhibit an anisotropy which must affect their electronic transport properties, with electric conduction more likely along a direction parallel to the molecular planes for the L-Asp anhydrous system. The analysis of the density of electronic states revealed the contributions per atom and per functional group to the valence and conduction band states. A nice agreement was found between the theoretical IR and Raman spectra and the experimental data for the L-Asp anhydrous crystal, allowing for an adequate interpretation of the normal modes involved in each spectral feature.
publishDate 2015
dc.date.issued.fl_str_mv 2015-02-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
status_str publishedVersion
format doctoralThesis
dc.identifier.uri.fl_str_mv http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14934
url http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14934
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.publisher.program.fl_str_mv Programa de PÃs-GraduaÃÃo em FÃsica
dc.publisher.initials.fl_str_mv UFC
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFC
instname:Universidade Federal do Ceará
instacron:UFC
reponame_str Biblioteca Digital de Teses e Dissertações da UFC
collection Biblioteca Digital de Teses e Dissertações da UFC
instname_str Universidade Federal do Ceará
instacron_str UFC
institution UFC
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1643295210237591552